Skip to main content

An Improved Ultrasound Image Segmentation Algorithm for Cattle Follicle Based on Markov Random Field Model

  • Conference paper
  • First Online:
Intelligent Computing Theories and Application (ICIC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 9772))

Included in the following conference series:

  • 1881 Accesses

Abstract

In this paper, we proposed an improved ultrasound image segmentation algorithm for cattle follicle based on Markov random field model. According to the original ultrasound image dataset, we removed the speckle noise in ultrasound images by anisotropic diffusion filtering algorithm on the first step, and used the image enhancement technology to enhance the contrast of target area, then combined with an improved k-means algorithm for initial segmentation to realize basic classification of image pixels. As for the discontinuous over segmentation, we used area rule to remove the discontinuous over-segmentation region. Compared to the traditional MRF algorithm, this new algorithm has more accurate segmentation of the target area, better segmentation effect. The improved k-means algorithm to make initial segmentation for MRF model can also avoid initial clustering center to be selected randomly in comparison with the traditional k-means algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Li, Y., Mao, X., Feng, D., Zhang, Y.: Fast and accuracy extraction of infrared target based on Markov random field. Sig. Process. 91(5), 1216–1223 (2011)

    Article  Google Scholar 

  2. Cordero-Grande, L., Vegas-Sánchez-Ferrero, G., Casaseca-de-la-Higuera, P., San-Román-Calvar, J.A., Revilla-Orodea, A., Martín-Fernández, M., Alberola-López, C.: Unsupervised 4D myocardium segmentation with a Markov Random Field based deformable model. Med. Image Anal. 15(3), 283–301 (2011)

    Article  Google Scholar 

  3. Yousefi, S., Azmi, R., Zahedi, M.: Brain tissue segmentation in MR images based on a hybrid of MRF and social algorithms. Med. Image Anal. 16(4), 840–848 (2012)

    Article  Google Scholar 

  4. Li, Q., Liu, G.: Multi-resolution Markov random field model with variable potentials in wavelet domain for texture image segmentation. In: 2010 International Conference on Computer Application and System Modeling (ICCASM), vol. 9, p. V9-342 (2010)

    Google Scholar 

  5. Mridula, J., Kumar, K., Patra, D.: Combining GLCM features and markov random field model for colour textured image segmentation. In: 2011 International Conference on Devices and Communications (ICDeCom), pp. 1–5 (2011)

    Google Scholar 

  6. Cao, Y., Luo, Y., Yang, S.: Image denoising based on hierarchical Markov random field. Pattern Recogn. Lett. 32(2), 368–374 (2011)

    Article  Google Scholar 

  7. Qin, A.K., Clausi, D.A.: Multivariate image segmentation using semantic region growing with adaptive edge penalty. IEEE Trans. Image Process. 19(8), 2157–2170 (2010)

    Article  MathSciNet  Google Scholar 

  8. Ye, X.F., Zhang, Z.H., Liu, P.X., Guan, H.L.: Sonar image segmentation based on GMRF and level-set models. Ocean Eng. 37(10), 891–901 (2010)

    Article  Google Scholar 

  9. Monaco, J.P., Tomaszewski, J.E., Feldman, M.D., Hagemann, I., Moradi, M., Mousavi, P., Madabhushi, A.: High-throughput detection of prostate cancer in histological sections using probabilistic pairwise Markov models. Med. Image Anal. 14(4), 617–629 (2010)

    Article  Google Scholar 

  10. Roche, A., Ribes, D., Bach-Cuadra, M., Krüger, G.: On the convergence of EM-like algorithms for image segmentation using Markov random fields. Med. Image Anal. 15(6), 830–839 (2011)

    Article  Google Scholar 

  11. Khayati, R., Vafadust, M., Towhidkhah, F., Nabavi, M.: Fully automatic segmentation of multiple sclerosis lesions in brain MR FLAIR images using adaptive mixtures method and Markov random field model. Comput. Biol. Med. 38(3), 379–390 (2008)

    Article  Google Scholar 

  12. Yang, X., Clausi, D.A.: Evaluating SAR sea ice image segmentation using edge-preserving region-based MRFs. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 5(5), 1383–1393 (2012)

    Article  Google Scholar 

  13. Gupta, A., Tripathi, A., Bhateja, V.: Despeckling of SAR images via an improved anisotropic diffusion algorithm. In: Satapathy, S.C., Udgata, S.K., Biswal, B.N. (eds.) Proceedings of Int. Conf. on Front. of Intell. Comput. AISC, vol. 199, pp. 747–754. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  14. Tauber, C., Batatia, H., Ayache, A.: A robust speckle reducing anisotropic diffusion. In: 2004 International Conference on Image Processing, 2004, ICIP 2004, vol. 1, pp. 247–250 (2004)

    Google Scholar 

  15. Khan, S.S., Ahmad, A.: Cluster center initialization algorithm for K-means clustering. Pattern Recogn. Lett. 25(11), 1293–1302 (2004)

    Article  Google Scholar 

  16. Anbeek, P., Vincken, K.L., van Osch, M.J., Bisschops, R.H., van der Grond, J.: Probabilistic segmentation of white matter lesions in MR imaging. NeuroImage 21(3), 1037–1044 (2004)

    Article  Google Scholar 

  17. Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., Palmer, A.C.: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans. Med. Imaging 13(4), 716–724 (1994)

    Article  Google Scholar 

  18. Stokking, R., Vincken, K.L., Viergever, M.A.: Automatic morphology-based brain segmentation (MBRASE) from MRI-T1 data. NeuroImage 12(6), 726–738 (2000)

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grant No. 31201121, No. 61373109 and No. 61403287), the Natural Science Foundation of Hubei Province (Grant No. 2014CFB288) and Open foundation of Hubei Province Key Laboratory of Intelligent Information Processing and Real-time Industrial System (Grant Nos. ZNSS2013A001 and ZNSS2013A004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bo Guan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Liu, J., Guan, B. (2016). An Improved Ultrasound Image Segmentation Algorithm for Cattle Follicle Based on Markov Random Field Model. In: Huang, DS., Jo, KH. (eds) Intelligent Computing Theories and Application. ICIC 2016. Lecture Notes in Computer Science(), vol 9772. Springer, Cham. https://doi.org/10.1007/978-3-319-42294-7_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-42294-7_55

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-42293-0

  • Online ISBN: 978-3-319-42294-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy