Abstract
During the last decade, we assist to a major change in the direction that theoretical models used in natural language processing follow. We are moving from rule-based systems to corpus-oriented paradigms. In this paper, we analyze several generative formalisms together with newer statistical and data-oriented linguistic methodologies. We review existing methods belonging to deep or shallow learning applied in various subfields of computational linguistics. The continuous, fast improvements obtained by practical, applied machine learning techniques may lead us to new theoretical developments in the classic models as well. We discuss several scenarios for future approaches.
This work was partially supported by the Fundação para a Ciência e a Tecnologia (Portuguese Foundation for Science and Technology) through the project UID/MAT/00297/2013 (Centro de Matemática e Aplicações).
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
Note that infinite derivations are not allowed because input strings are finite. Empty elementary trees can be avoided in the same way as eliminating \(\epsilon \)-productions from CFGs.
References
Association for Computational Linguistics (ACL). https://www.aclweb.org/. Accessed 19 Jan 2017
The 2012 ACM Computing Classification System. http://www.acm.org/publications/class-2012. Accessed 25 Jan 2017
Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987)
Angluin, D., Becerra-Bonache, L.: Learning meaning before syntax. In: Clark, A., Coste, F., Miclet, L. (eds.) ICGI 2008. LNCS (LNAI), vol. 5278, pp. 1–14. Springer, Heidelberg (2008). doi:10.1007/978-3-540-88009-7_1
Angluin, D., Becerra-Bonache, L., Dediu, A.H., Reyzin, L.: Learning finite automata using label queries. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS (LNAI), vol. 5809, pp. 171–185. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04414-4_17
Bangalore, S., Joshi, A.K.: Supertagging: an approach to almost parsing. Comput. Linguist. 25, 237–265 (1999)
Bangalore, S., Joshi, A.K. (eds.): Supertagging. A Bradford Book. The MIT Press, Cambridge (2010)
Bellegarda, J.R., Monz, C.: State of the art in statistical methods for language and speech processing. Comput. Speech Lang. 35, 163–184 (2016). http://dx.doi.org/10.1016/j.csl.2015.07.001
Bikel, D.M.: Intricacies of Collins’ parsing model. Comput. Linguist. 30(4), 479–511 (2004)
Branscombe, M.: Review: Nuance dragon for windows offers strong voice recognition. Computer World, January 2016. http://www.computerworld.com/article/3018071/desktop-apps/review-nuance-dragon-for-windows-offers-strong-voice-recognition.html
Brill, E.: Transformation-based error-driven learning and natural language processing: a case study in part-of-speech tagging. Comput. Linguist. 21(4), 543–565 (1995)
Chierchia, G.: Anaphora and dynamic binding. Linguist. Philos. 15, 111–183 (1992)
Cole, R. (ed.): Survey of the State of the Art in Human Language Technology. Cambridge University Press, New York (1997)
Collins, M.: Head-Driven Statistical Models for Natural Language Parsing. Ph.D. thesis, University of Pennsylvania, Philadelphia, PA (1999)
Crossley, S.A., Kyle, K., McNamara, D.S.: The tool for the automatic analysis of text cohesion (taaco): automatic assessment of local, global, and text cohesion. Behav. Res. Methods 2015, 1–11 (2015)
De Beaugrande, R., Dressler, W.: Introduction to Text Linguistics. Longman Linguistics Library. Routledge, London (2016). https://books.google.pt/books?id=gQrrjwEACAAJ
Dediu, A.-H., Klempien-Hinrichs, R., Kreowski, H.-J., Nagy, B.: Contextual hypergraph grammars – a new approach to the generation of hypergraph languages. In: Ibarra, O.H., Dang, Z. (eds.) DLT 2006. LNCS, vol. 4036, pp. 327–338. Springer, Heidelberg (2006). doi:10.1007/11779148_30
Dediu, A.H., Tîrnăucă, C.I.: Evolutionary algorithms for parsing tree adjoining grammars. In: Bel-Enguix, G., Jiménez-López, M. (eds.) Bio-Inspired Models for Natural and Formal Languages, pp. 277–304. Cambrige Scholars (2011)
Deep Learning. https://en.m.wikipedia.org/wiki/Deep_learning. Accessed 31 Jan 2017
Dekker, P.: Coreference and representationalism. In: von Heusinger, K., Egli, U. (eds.) Reference and Anaphorical Relations, pp. 287–310. Kluwer, Dordrecht (2000)
Dempsey, I., O’Neill, M., Brabazon, A.: Foundations in Grammatical Evolution for Dynamic Environments. Springer, Heidelberg (2009)
Denkowski, M.: A Survey of Techniques for Unsupervised Word Sense Induction. Lang. Stat. II Lit. Rev. (2009)
Dorow, B., Widdows, D.: Discovering corpus-specific word senses. In: 82. Proceedings of the 10th Conference of the European Chapter of the Association for Computational Linguistics, Budapest, Hungary (2003)
Erekhinskaya, T., Moldovan, D.: Lexical chains on wordnet and extensions. In: Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference, FLAIRS 2013 (2013)
Fahrenberg, U., Biondi, F., Corre, K., Jegourel, C., Kongshøj, S., Legay, A.: Measuring global similarity between texts. In: Besacier, L., Dediu, A.-H., Martín-Vide, C. (eds.) SLSP 2014. LNCS (LNAI), vol. 8791, pp. 220–232. Springer, Cham (2014). doi:10.1007/978-3-319-11397-5_17
Fellbaum, C. (ed.): WordNet: An Electronic Database. MIT Press, Cambridge (1998)
Ferenčík, M.: A Survey of English Stylistics. http://www.pulib.sk/elpub2/FF/Ferencik/INDEX.HTM. Accessed 22 Jan 2017
Fortu, O., Moldovan, D.: Identification of textual contexts. In: Dey, A., Kokinov, B., Leake, D., Turner, R. (eds.) CONTEXT 2005. LNCS (LNAI), vol. 3554, pp. 169–182. Springer, Heidelberg (2005). doi:10.1007/11508373_13
Freund, Y., Kearns, M.J., Ron, D., Rubinfeld, R., Schapire, R.E., Sellie, L.: Efficient learning of typical finite automata from random walks. Inf. Comput. 138(1), 23–48 (1997)
Gécseg, F., Steinby, M.: Tree Automata. Akadémiai Kiadó, Budapest (1984)
Gécseg, F., Steinby, M.: Tree languages. In: Salomaa, A., Rozenberg, G. (eds.) Handbook of Formal Languages. Beyond Words, vol. 3, pp. 1–68. Springer, New York (1997)
Global WordNet Association. http://globalwordnet.org/. Accessed 24 Jan 2017
Gold, E.M.: Language identification in the limit. Inf. Control 10(5), 447–474 (1967)
Harabagiu, S.M.: From lexical cohesion to textual coherence: a data driven perspective. Int. J. Patt. Recognit. Artif. Intell. 13(2), 247–265 (1999)
Hemberg, E.A.P.: An Exploration of Grammars in Grammatical Evolution. Ph.D. thesis, University College Dublin, September 2010
Hirschberg, J., Manning, C.D.: Advances in natural language processing. Science 349(6245), 261–266 (2015). http://dx.doi.org/10.1126/science.aaa8685
Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation, 3rd edn. Addison-Wesley, Reading (2006)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading (1979)
Hovy, E., Lin, C.Y.: Automated text summarization in SUMMARIST. In: Proceedings of the Intelligent Scalable Text Summarization Workshop, pp. 18–24 (1997)
Joshi, A., Levy, L., Takahashi, M.: Tree adjunct grammars. J. Comput. Syst. Sci. 10(1), 136–163 (1975)
Jurafsky, D., Martin, J.H.: Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition, 1st edn. Prentice Hall PTR, Upper Saddle River (2000)
Kakkonen, T.: Framework and resources for natural language parser evaluation. Computing Research Repository abs/0712.3705 (2007)
Kamp, H., Reyle, U.: From Discourse to Logic. Kluwer, Dordrecht (1993)
Kastner, I., Monz, C.: Automatic single-document key fact extraction from newswire articles. In: Proceedings of the 12th Conference on European Chapter of the ACL (EACL 2009), Athens, Greece, pp. 415–423 (2009)
Kay, M.: Machine translation: the disappointing past and present. In: Cole, R. (ed.) Survey of the State of the Art in Human Language Technology, pp. 248–250. Cambridge University Press, New York (1997). http://dl.acm.org/citation.cfm?id=278696.278813
Knight, K., Marcu, D.: Summarization beyond sentence extraction: a probabilistic approach to sentence compression. Artif. Intell. 13(1), 91–107 (2001)
Koehn, P.: Statistical Machine Translation. Cambridge University Press, Cambridge (2009)
Kudlek, M., Martín-Vide, C., Mateescu, A., Mitrana, V.: Contexts and the concept of mild context-sensitivity. Linguist. Philos. 26, 703–725 (2002)
Le, Q., Mikolov, T.: Distributed representations of sentences and documents. In: Proceedings of the 31st International Conference on Machine Learning, pp. 1188–1196 (2014)
Lopez, A.: Statistical machine translation. ACM Comput. Surv. 40(3), 1–8 (2008)
Manning, C.D.: Part-of-speech tagging from 97% to 100%: is it time for some linguistics? In: Gelbukh, A.F. (ed.) CICLing 2011. LNCS, vol. 6608, pp. 171–189. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19400-9_14
Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures et Appl. 14(10), 1525–1534 (1969). http://citeseer.ist.psu.edu/marcus69contextual.html
Mariòo, J.B., Banchs, R.E., Crego, J.M., de Gispert, A., Lambert, P., Fonollosa, J.A.R., Costa-Jussà, M.R.: N-gram-based machine translation. Comput. Linguist. Arch. 32(4), 527–549 (2006). MIT Press, Cambridge
McCarthy, J.: Notes on formalizing context. In: Proceedings of the 13th International Joint Conference on Artificial Intelligence, IJCAI 1993, vol. 1, pp. 555–560. Morgan Kaufmann Publishers Inc., San Francisco (1993). http://dl.acm.org/citation.cfm?id=1624025.1624103
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 26, pp. 3111–3119. Curran Associates, Inc. (2013). http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
Miller, G.A.: Dictionaries of the mind. In: Proceedings of the 23rd Annual Meeting on Association for Computational Linguistics, ACL 1985, pp. 305–314. Association for Computational Linguistics, Stroudsburg (1985). http://dx.doi.org/10.3115/981210.981248
Miller, G.A.: WordNet: a lexical database for English. Commun. ACM 38(11), 39–41 (1995). http://doi.acm.org/10.1145/219717.219748
Mohri, M.: Finite-state transducers in language and speech processing. Comput. Linguist. 23(2), 269–311 (1997). http://dl.acm.org/citation.cfm?id=972695.972698
Montague, R.: Universal grammar. Theoria 36, 373–398 (1970)
Morris, J., Hirst, G.: Lexical cohesion computed by thesaural relations as an indicator of the structure of text. Comput. Linguist. 17(1), 21–48 (1991). http://dl.acm.org/citation.cfm?id=971738.971740
MultiJEDI - Multilingual joint word sense disambiguation. http://multijedi.org/. Accessed 28 Jan 2017
Muskens, R.: Combining Montague semantics and discourse representation. Linguist. Philos. 19(2), 143–186 (1996)
Navigli, R.: Word sense disambiguation: a survey. ACM Comput. Surv. (CSUR) 41(2), 1–69 (2009)
Navigli, R., Ponzetto, S.P.: Babelnet: the automatic construction, evaluation and application of a wide-coverage multilingual semantic network. Artif. Intell. 193, 217–250 (2012). http://dx.doi.org/10.1016/j.artint.2012.07.001
Navigli, R., Velardi, P.: Structural semantic interconnections: a knowledge-based approach to word sense disambiguation. IEEE Trans. Patt. Anal. Mach. Intell 27(7), 1075–1088 (2005)
O’Neill, M., Ryan, C.: Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer, Dordrecht (2003)
Pal, A.R., Saha, D.: Word sense disambiguation: a survey. Int. J. Control Theor. Comput. Model. (IJCTCM) 5(3), 1–16 (2015)
Păun, G.: Marcus Contextual Grammars. Kluwer Academic Publishers, Norwell (1997)
Raganato, A., Bovi, C.D., Navigli, R.: Automatic construction and evaluation of a large semantically enriched wikipedia. In: Proceedings of 25th International Joint Conference on Artificial Intelligence (IJCAI 2016), New York, USA, July 2016
Rieger, B.B.: On distributed representation in word semantics. Technical report, Forschungsbericht TR-91-012, International Computer Science Institute (ICSI) (1991)
Roen, D.H.: The effects of cohesive conjunctions, reference, response rhetorical predicates, and topic on reading rate and written free recall. J. Read. Behav. 16(1), 15–26 (1984)
Rothlauf, F.: Design of Modern Heuristics: Principles and Application, 1st edn. Springer, Heidelberg (2011)
Rowcliffe, I.C.: Seven Standards of Textuality? http://web.letras.up.pt/icrowcli/textual.html. Accessed 22 Jan 2017
Sahlgren, M.: The distributional hypothesis. Ital. J. Linguist. 20(1), 33–54 (2008)
Schabes, Y., Joshi, A.K.: An Earley-type parsing algorithm for tree adjoining grammars. In: Proceedings of the 26th Annual Meeting of the Association for Computational Linguistics (ACL 1988), pp. 258–269. Association for Computational Linguistics (1988)
Schmid, H.: Probabilistic part-of-speech tagging using decision trees. In: International Conference on New Methods in Language Processing, Manchester, UK, pp. 44–49 (1994)
SemEval Portal. https://www.aclweb.org/aclwiki/index.php?title=SemEval_Portal. Accessed 19 Jan 2017
Sikkel, K.: Parsing Schemata: A Framework for Specification and Analysis of Parsing Algorithms, 1st edn. Springer, Heidelberg (2013)
Sudkamp, T.A.: Languages and Machines: An Introduction to the Theory of Computer Science, 3rd edn. Addison-Wesley, Reading (2006)
Ulbaek, I.: Second order coherence: a new way of looking at incoherence in texts. Linguist. Beyond and Within 2, 167–179 (2016)
Valiant, L.G.: A theory of the learnable. Commun. ACM 27(11), 1134–1142 (1984)
Vijay-Shanker, K., Joshi, A.K.: Some computational properties of tree adjoining grammars. In: Proceedings of the 23rd Annual Meeting of the Association for Computational Linguistics (ACL 1985), pp. 82–93. Association for Computational Linguistics (1985)
Véronis, J.: Hyperlex: lexical cartography for information retrieval. Comput. Speech Lang. 18(3), 223–252 (2004)
Weng, F., Angkititrakul, P., Shriberg, E., Heck, L.P., Peters, S., Hansen, J.H.L.: Conversational in-vehicle dialog systems: the past, present, and future. IEEE Signal Process. Mag. 33(6), 49–60 (2016). http://dx.doi.org/10.1109/MSP.2016.2599201
Widdows, D., Dorow, B.: A graph model for unsupervised lexical acquisition. In: Proceedings of the 19th International Conference on Computational Linguistics, COLING, Taipei, Taiwan, pp. 1–7 (2002)
Winston, P.H.: Artificial Intelligence, 3rd edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1992)
Zajic, D., Dorr, B., Schwartz, R., Monz, C., Lin, J.: A sentence-trimming approach to multi-document summarization. In: Proceedings of EMNLP 2005 Workshop on Text Summarization (2005)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Dediu, AH., M. Matos, J., Martín-Vide, C. (2017). Natural Language Processing, Moving from Rules to Data. In: Gopal, T., Jäger , G., Steila, S. (eds) Theory and Applications of Models of Computation. TAMC 2017. Lecture Notes in Computer Science(), vol 10185. Springer, Cham. https://doi.org/10.1007/978-3-319-55911-7_3
Download citation
DOI: https://doi.org/10.1007/978-3-319-55911-7_3
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-55910-0
Online ISBN: 978-3-319-55911-7
eBook Packages: Computer ScienceComputer Science (R0)