Abstract
While numerous clustering algorithms can be found in the literature, existing algorithms are usually afflicted by two major problems. First, the majority of clustering algorithms requires user-specified parameters as input, and their clustering results rely heavily on these parameters. Second, many algorithms generate clusters of only spherical shapes. In this paper we try to solve these two problems based on dominant set and cluster expansion. We firstly use a modified dominant sets clustering algorithm to generate initial clusters which are parameter independent and usually smaller than the real clusters. Then we expand the initial clusters based on two density based clustering algorithms to generate clusters of arbitrary shapes. In experiments on various datasets our algorithm outperforms the original dominant sets algorithm and several other algorithms. It is also shown to be effective in image segmentation experiments.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Achtert, E., Bohm, C., Kroger, P.: DeLi-CLu: boosting robustness, completeness, usability, and efficiency of hierarchical clustering by a closest pair ranking. In: International Conference on Knowledge Discovery and Data Mining, pp. 119–128 (2006)
Ankerst, M., Breunig, M.M., Kriegel, H.P., Sander, J.: Optics: ordering points to identify the clustering structure. In: ACM SIGMOD International Conference on Management of Data, pp. 49–60 (1999)
Brendan, J.F., Delbert, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)
Bulo, S.R., Pelillo, M., Bomze, I.M.: Graph-based quadratic optimization: a fast evolutionary approach. Comput. Vis. Image Underst. 115(7), 984–995 (2011)
Bulo, S.R., Torsello, A., Pelillo, M.: A game-theoretic approach to partial clique enumeration. Image Vis. Comput. 27(7), 911–922 (2009)
Chang, H., Yeung, D.Y.: Robust path-based spectral clustering. Pattern Recogn. 41(1), 191–203 (2008)
Daszykowski, M., Walczak, B., Massart, D.L.: Looking for natural patterns in data: part 1. density-based approach. Chemometr. Intell. Lab. Syst. 56(2), 83–92 (2001)
Ester, M., Kriegel, H.P., Sander, J., Xu, X.W.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: International Conference on Knowledge Discovery and Data Mining, pp. 226–231 (1996)
Fu, L., Medico, E.: Flame, a novel fuzzy clustering method for the analysis of DNA microarray data. BMC Bioinform. 8(1), 1–17 (2007)
Gionis, A., Mannila, H., Tsaparas, P.: Clustering aggregation. ACM Trans. Knowl. Disc. Data 1(1), 1–30 (2007)
Hou, J., Gao, H., Li, X.: DSets-DBSCAN: a parameter-free clustering algorithm. IEEE Trans. Image Process. 25(7), 3182–3193 (2016)
Hou, J., Liu, W., Xu, E., Cui, H.: Towards parameter-independent data clustering and image segmentation. Pattern Recogn. 60, 25–36 (2016)
Hou, J., Pelillo, M.: A simple feature combination method based on dominant sets. Pattern Recogn. 46(11), 3129–3139 (2013)
Jain, A.K., Law, M.H.C.: Data clustering: a user’s dilemma. In: Pal, S.K., Bandyopadhyay, S., Biswas, S. (eds.) PReMI 2005. LNCS, vol. 3776, pp. 1–10. Springer, Heidelberg (2005). doi:10.1007/11590316_1
Zemene, E., Pelillo, M.: Interactive image segmentation using constrained dominant sets. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 278–294. Springer, Cham (2016). doi:10.1007/978-3-319-46484-8_17
Monti, S., Tamayo, P., Mesirov, J., Golub, T.: Consensus clustering: a resampling-based method for class discovery and visualization of gene expression microarray data. Mach. Learn. 52(1–2), 91–118 (2003)
Pavan, M., Pelillo, M.: Dominant sets and pairwise clustering. IEEE Trans. Pattern Anal. Mach. Intell. 29(1), 167–172 (2007)
Rodriguez, A., Laio, A.: Clustering by fast search and find of density peaks. Science 344, 1492–1496 (2014)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 167–172 (2000)
Torsello, A., Bulo, S.R., Pelillo, M.: Beyond partitions: allowing overlapping groups in pairwise clustering. In: International Conference on Pattern Recognition, pp. 1–4 (2008)
Tripodi, R., Pelillo, M.: Document clustering games. In: The 5th International Conference on Pattern Recognition Applications and Methods, pp. 109–118 (2016)
Vascon, S., Mequanint, E.Z., Cristani, M., Hung, H., Pelillo, M., Murino, V.: Detecting conversational groups in images and sequences: a robust game-theoretic approach. Comput. Vis. Image Underst. 143, 11–24 (2016)
Veenman, C.J., Reinders, M., Backer, E.: A maximum variance cluster algorithm. IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1273–1280 (2002)
Zahn, C.T.: Graph-theoretical methods for detecting and describing gestalt clusters. IEEE Trans. Comput. 20(1), 68–86 (1971)
Zhu, X., Loy, C.C., Gong, S.: Constructing robust affinity graphs for spectral clustering. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 1450–1457 (2014)
Acknowledgement
This work is supported in part by the National Natural Science Foundation of China under Grant No. 61473045 and by China Scholarship Council.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Hou, J., Liu, W. (2017). Clustering Based on Dominant Set and Cluster Expansion. In: Kim, J., Shim, K., Cao, L., Lee, JG., Lin, X., Moon, YS. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2017. Lecture Notes in Computer Science(), vol 10235. Springer, Cham. https://doi.org/10.1007/978-3-319-57529-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-57529-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-57528-5
Online ISBN: 978-3-319-57529-2
eBook Packages: Computer ScienceComputer Science (R0)