Abstract
In this paper, the hypersphere universe method is applied on Heterogeneous Comprehensive Learning Particle Swarm Optimization (HCLPSO) and a classical representative of swarm intelligence Particle Swarm Optimization (PSO). The goal is to the compare this method to the classical version of these algorithms. The comparisons are made on CEC’17 benchmark set functions. The experiments were carried out according to CEC benchmark rules and statistically evaluated using Friedman rank test.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)
Lynn, N., Suganthan, P.N.: Heterogeneous comprehensive learning particle swarm optimization with enhanced exploration and exploitation. Swarm Evol. Comput. 24, 11–24 (2015)
Lynn, N.: Heterogeneous particle swarm optimization with an application of unit commitment in power system, Singapore. Thesis. School of Electrical and Electronic Engineering. Supervisor Ponnuthurai Nagaratnam Suganthan (2016)
Awad, N.H., et al.: Problem Definitions and Evaluation Criteria for CEC 2017 Special Session and Competition on Single-Objective Real-Parameter Numerical Optimization (2016)
Kennedy, J.: The particle swarm: social adaptation of knowledge. In: Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 303–308 (1997)
Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 10(3), 281–295 (2006)
Eberhart, R.C., Shi, Y.: Comparing inertia weights and constriction factors in particle swarm optimization. In: Proceedings of the 2000 Congress on Evolutionary Computation. CEC00, pp. 84–88. IEEE (2000)
Friedman, M.: The use of ranks to avoid the assumption of normality implicits in the analysis of variance. J. Am. Stat. Assoc. 32, 675–701 (1937)
Demsar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Acknowledgements
This work was supported by Grant Agency of the Czech Republic – GACR P103/15/06700S, further by the Ministry of Education, Youth and Sports of the Czech Republic within the National Sustainability Programme Project no. LO1303 (MSMT-7778/2014. Also by the European Regional Development Fund under the Project CEBIA-Tech no. CZ.1.05/2.1.00/03.0089 and by Internal Grant Agency of Tomas Bata University under the Projects no. IGA/CebiaTech/2017/004.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Kadavy, T., Pluhacek, M., Viktorin, A., Senkerik, R. (2017). Hypersphere Universe Boundary Method Comparison on HCLPSO and PSO. In: MartÃnez de Pisón, F., Urraca, R., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2017. Lecture Notes in Computer Science(), vol 10334. Springer, Cham. https://doi.org/10.1007/978-3-319-59650-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-59650-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-59649-5
Online ISBN: 978-3-319-59650-1
eBook Packages: Computer ScienceComputer Science (R0)