Skip to main content

Real-Time Detection and Simulation of Abnormal Crowd Behavior

  • Conference paper
  • First Online:
Augmented Reality, Virtual Reality, and Computer Graphics (AVR 2017)

Abstract

In this paper, we propose an algorithm for abnormal crowd behavior detection and simulation for real time surveillance applications. Our method is a low computational cost approach based on moved pixel density modelling. Using statistical methods, we obtain the model of pixel densities in normal behaviors based on datasets available in the literature. During abnormal anomalous event detection we run a simulation of people motion and save the data for future analysis. We test the execution time of our algorithm for motion detection to validate its usage in fast applications. Finally we validate our method comparing it with other approaches in the literature in two datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Popoola, O.P., Wang, K.: Video-based abnormal human behavior recognition—a review. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 865–878 (2012)

    Article  Google Scholar 

  2. Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: Proceeding IEEE International Conference on Computer Vision, pp. 2720–2727 (2013)

    Google Scholar 

  3. Aguilar, W.G., Luna, M.A., Moya, J.F., Abad, V., Parra, H., Ruiz, H.: Pedestrian detection for UAVs using cascade classifiers with meanshift. In: IEEE 11th International Conference on Semantic Computing (ICSC), pp. 509–514 (2017)

    Google Scholar 

  4. Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. Comput. Vis. Pattern (2009)

    Google Scholar 

  5. Aguilar, W.G., Alulema, D., Limaico, A., Sandoval, D.: Development and verification of a verbal corpus based on natural language for Ecuadorian Dialect. In: IEEE 11th International Conference on Semantic Computing (ICSC), pp. 515–519 (2017)

    Google Scholar 

  6. Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)

    Article  Google Scholar 

  7. Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 2014(1), 46 (2014)

    Article  Google Scholar 

  8. Jacques Jr., J.S., Musse, S., Jung, C.: Crowd analysis using computer vision techniques. IEEE Signal Process. Mag. 27(5), 66–77 (2010)

    Google Scholar 

  9. Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. IFAC Proc. 18(1), 9638–9643 (2011)

    Article  Google Scholar 

  10. Aguilar, W., Morales, S.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)

    Article  Google Scholar 

  11. Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., Pettré, J.: Realistic following behaviors for crowd simulation. EUROGRAPHICS 31(2) (2012)

    Google Scholar 

  12. Raghavendra, R., Cristani, M., Bue, A., Sangineto, E., Murino, V.: Anomaly detection in crowded scenes: a novel framework based on swarm optimization and social force modeling. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds.) Modeling, Simulation and Visual Analysis of Crowds. TISVC, vol. 11, pp. 383–411. Springer, New York (2013). doi:10.1007/978-1-4614-8483-7_15

    Chapter  Google Scholar 

  13. Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection and improved object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)

    Google Scholar 

  14. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)

    Article  Google Scholar 

  15. Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1975–1981 (2010)

    Google Scholar 

  16. Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: Computer Vision and Pattern Recognition, pp. 2054–2060 (2010)

    Google Scholar 

  17. Mehran, R., Moore, Brian E., Shah, M.: A streakline representation of flow in crowded scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 439–452. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_32

    Chapter  Google Scholar 

  18. Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: Computer Vision and Pattern Recognition 2007 (2007)

    Google Scholar 

  19. Andrade, E.L., Blunsden, S., Fisher, R.B.: Modelling crowd scenes for event detection. In: 18th International Conference Pattern Recognition, ICPR 2006, vol. 1, pp. 175–178 (2006)

    Google Scholar 

  20. Ke, Y., Sukthankar, R., Hebert, M.: Event detection in crowded videos. In: IEEE 11th International Conference Computer Vision, ICCV 2007, pp. 1–8 (2007)

    Google Scholar 

  21. Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: IEEE Conference Computer Vision Pattern Recognition, pp. 1446–1453 (2009)

    Google Scholar 

  22. Zivkovic, Z., Van Der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)

    Article  Google Scholar 

  23. Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 555–560 (2008)

    Article  Google Scholar 

  24. Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2797 (2009)

    Google Scholar 

Download references

Acknowledgement

This work is part of the projects VisualNavDrone 2016-PIC-024 and MultiNavCar 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wilbert G. Aguilar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Aguilar, W.G. et al. (2017). Real-Time Detection and Simulation of Abnormal Crowd Behavior. In: De Paolis, L., Bourdot, P., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2017. Lecture Notes in Computer Science(), vol 10325. Springer, Cham. https://doi.org/10.1007/978-3-319-60928-7_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-60928-7_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-60927-0

  • Online ISBN: 978-3-319-60928-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy