Abstract
In this paper, we propose an algorithm for abnormal crowd behavior detection and simulation for real time surveillance applications. Our method is a low computational cost approach based on moved pixel density modelling. Using statistical methods, we obtain the model of pixel densities in normal behaviors based on datasets available in the literature. During abnormal anomalous event detection we run a simulation of people motion and save the data for future analysis. We test the execution time of our algorithm for motion detection to validate its usage in fast applications. Finally we validate our method comparing it with other approaches in the literature in two datasets.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Popoola, O.P., Wang, K.: Video-based abnormal human behavior recognition—a review. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 865–878 (2012)
Lu, C., Shi, J., Jia, J.: Abnormal event detection at 150 fps in matlab. In: Proceeding IEEE International Conference on Computer Vision, pp. 2720–2727 (2013)
Aguilar, W.G., Luna, M.A., Moya, J.F., Abad, V., Parra, H., Ruiz, H.: Pedestrian detection for UAVs using cascade classifiers with meanshift. In: IEEE 11th International Conference on Semantic Computing (ICSC), pp. 509–514 (2017)
Mehran, R., Oyama, A., Shah, M.: Abnormal crowd behavior detection using social force model. Comput. Vis. Pattern (2009)
Aguilar, W.G., Alulema, D., Limaico, A., Sandoval, D.: Development and verification of a verbal corpus based on natural language for Ecuadorian Dialect. In: IEEE 11th International Conference on Semantic Computing (ICSC), pp. 515–519 (2017)
Aguilar, W.G., Angulo, C.: Real-time model-based video stabilization for microaerial vehicles. Neural Process. Lett. 43(2), 459–477 (2016)
Aguilar, W.G., Angulo, C.: Real-time video stabilization without phantom movements for micro aerial vehicles. EURASIP J. Image Video Process. 2014(1), 46 (2014)
Jacques Jr., J.S., Musse, S., Jung, C.: Crowd analysis using computer vision techniques. IEEE Signal Process. Mag. 27(5), 66–77 (2010)
Cabras, P., Rosell, J., Pérez, A., Aguilar, W.G., Rosell, A.: Haptic-based navigation for the virtual bronchoscopy. IFAC Proc. 18(1), 9638–9643 (2011)
Aguilar, W., Morales, S.: 3D environment mapping using the kinect V2 and path planning based on RRT algorithms. Electronics 5(4), 70 (2016)
Lemercier, S., Jelic, A., Kulpa, R., Hua, J., Fehrenbach, J., Degond, P., Appert-Rolland, C., Donikian, S., Pettré, J.: Realistic following behaviors for crowd simulation. EUROGRAPHICS 31(2) (2012)
Raghavendra, R., Cristani, M., Bue, A., Sangineto, E., Murino, V.: Anomaly detection in crowded scenes: a novel framework based on swarm optimization and social force modeling. In: Ali, S., Nishino, K., Manocha, D., Shah, M. (eds.) Modeling, Simulation and Visual Analysis of Crowds. TISVC, vol. 11, pp. 383–411. Springer, New York (2013). doi:10.1007/978-1-4614-8483-7_15
Basharat, A., Gritai, A., Shah, M.: Learning object motion patterns for anomaly detection and improved object detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8 (2008)
Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 747–757 (2000)
Mahadevan, V., Li, W., Bhalodia, V., Vasconcelos, N.: Anomaly detection in crowded scenes. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1975–1981 (2010)
Wu, S., Moore, B.E., Shah, M.: Chaotic invariants of lagrangian particle trajectories for anomaly detection in crowded scenes. In: Computer Vision and Pattern Recognition, pp. 2054–2060 (2010)
Mehran, R., Moore, Brian E., Shah, M.: A streakline representation of flow in crowded scenes. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 439–452. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_32
Ali, S., Shah, M.: A lagrangian particle dynamics approach for crowd flow segmentation and stability analysis. In: Computer Vision and Pattern Recognition 2007 (2007)
Andrade, E.L., Blunsden, S., Fisher, R.B.: Modelling crowd scenes for event detection. In: 18th International Conference Pattern Recognition, ICPR 2006, vol. 1, pp. 175–178 (2006)
Ke, Y., Sukthankar, R., Hebert, M.: Event detection in crowded videos. In: IEEE 11th International Conference Computer Vision, ICCV 2007, pp. 1–8 (2007)
Kratz, L., Nishino, K.: Anomaly detection in extremely crowded scenes using spatio-temporal motion pattern models. In: IEEE Conference Computer Vision Pattern Recognition, pp. 1446–1453 (2009)
Zivkovic, Z., Van Der Heijden, F.: Efficient adaptive density estimation per image pixel for the task of background subtraction. Pattern Recogn. Lett. 27(7), 773–780 (2006)
Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D.: Robust real-time unusual event detection using multiple fixed-location monitors. IEEE Trans. Pattern Anal. Mach. Intell. 30(3), 555–560 (2008)
Elhamifar, E., Vidal, R.: Sparse subspace clustering. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2790–2797 (2009)
Acknowledgement
This work is part of the projects VisualNavDrone 2016-PIC-024 and MultiNavCar 2016-PIC-025, from the Universidad de las Fuerzas Armadas ESPE, directed by Dr. Wilbert G. Aguilar.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Aguilar, W.G. et al. (2017). Real-Time Detection and Simulation of Abnormal Crowd Behavior. In: De Paolis, L., Bourdot, P., Mongelli, A. (eds) Augmented Reality, Virtual Reality, and Computer Graphics. AVR 2017. Lecture Notes in Computer Science(), vol 10325. Springer, Cham. https://doi.org/10.1007/978-3-319-60928-7_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-60928-7_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-60927-0
Online ISBN: 978-3-319-60928-7
eBook Packages: Computer ScienceComputer Science (R0)