Skip to main content

Inherent-Cost Aware Collective Spatial Keyword Queries

  • Conference paper
  • First Online:
Advances in Spatial and Temporal Databases (SSTD 2017)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10411))

Included in the following conference series:

Abstract

With the proliferation of spatial-textual data such as location-based services and geo-tagged websites, spatial keyword queries become popular in the literature. One example of these queries is the collective spatial keyword query (CoSKQ) which is to find a set of objects in the database such that it covers a given set of query keywords collectively and has the smallest cost. Some existing cost functions were proposed in the literature, which capture different aspects of the distances among the objects in the set and the query. However, we observe that in some applications, each object has an inherent cost (e.g., workers have monetary costs) which are not captured by any of the existing cost functions. Motivated by this, in this paper, we propose a new cost function called the maximum dot size cost which captures both the distances among objects in a set and a query as existing cost functions do and the inherent costs of the objects. We prove that the CoSKQ problem with the new cost function is NP-hard and develop two algorithms for the problem. One is an exact algorithm which is based on a novel search strategy and employs a few pruning techniques and the other is an approximate algorithm which provides a \(\ln |q{.}\psi |\) approximation factor, where \(|q{.}\psi |\) denotes the number of query keywords. We conducted extensive experiments based on both real datasets and synthetic datasets, which verified our theoretical results and efficiency of our algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.rtreeportal.org.

  2. 2.

    http://barcelona.research.yahoo.net/webspam/datasets/uk2007.

References

  1. Cao, X., Chen, L., Cong, G., Xiao, X.: Keyword-aware optimal route search. PVLDB 5(11), 1136–1147 (2012)

    Google Scholar 

  2. Cao, X., Cong, G., Guo, T., Jensen, C.S., Ooi, B.C.: Efficient processing of spatial group keyword queries. TODS 40(2), 13 (2015)

    Article  MathSciNet  Google Scholar 

  3. Cao, X., Cong, G., Jensen, C.S., Ooi, B.C.: Collective spatial keyword querying. In: SIGMOD, pp. 373–384. ACM (2011)

    Google Scholar 

  4. Cao, X., Cong, G., Jensen, C.S., Yiu, M.L.: Retrieving regions of intersect for user exploration. PVLDB 7(9), 733–744 (2014)

    Google Scholar 

  5. Cary, A., Wolfson, O., Rishe, N.: Efficient and scalable method for processing top-k spatial boolean queries. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 87–95. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13818-8_8

    Chapter  Google Scholar 

  6. Chan, H.K.-H., Long, C., Wong, R.C.-W.: Inherent-cost aware collective spatial keyword queries (full version) (2017). http://www.cse.ust.hk/~khchanak/paper/sstd17-coskq-full.pdf

  7. Chazelle, B., Cole, R., Preparata, F.P., Yap, C.: New upper bounds for neighbor searching. Inf. Control 68(1), 105–124 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Choi, D.-W., Pei, J., Lin, X.: Finding the minimum spatial keyword cover. In: ICDE, pp. 685–696. IEEE (2016)

    Google Scholar 

  9. Cong, G., Jensen, C.S., Wu, D.: Efficient retrieval of the top-k most relevant spatial web objects. PVLDB 2(1), 337–348 (2009)

    Google Scholar 

  10. Cong, G., Lu, H., Ooi, B.C., Zhang, D., Zhang, M.: Efficient spatial keyword search in trajectory databases. Arxiv preprint arXiv:1205.2880 (2012)

  11. Deng, K., Li, X., Lu, J., Zhou, X.: Best keyword cover search. TKDE 27(1), 61–73 (2015)

    Google Scholar 

  12. Fan, J., Li, G., Chen, L.Z.S., Hu, J.: Seal: spatio-textual similarity search. PVLDB 5(9), 824–835 (2012)

    Google Scholar 

  13. Felipe, I.D., Hristidis, V., Rishe, N.: Keyword search on spatial databases. In: ICDE, pp. 656–665. IEEE (2008)

    Google Scholar 

  14. Gao, Y., Zhao, J., Zheng, B., Chen, G.: Efficient collective spatial keyword query processing on road networks. ITS 17(2), 469–480 (2016)

    Google Scholar 

  15. Guo, T., Cao, X., Cong, G.: Efficient algorithms for answering the m-closest keywords query. In: SIGMOD. ACM (2015)

    Google Scholar 

  16. Li, Z., Lee, K., Zheng, B., Lee, W., Lee, D., Wang, X.: IR-tree: an efficient index for geographic document search. TKDE 23(4), 585–599 (2011)

    Google Scholar 

  17. Liu, J., Deng, K., Sun, H., Ge, Y., Zhou, X., Jensen, C.: Clue-based spatio-textual query. PVLDB 10(5), 529–540 (2017)

    Google Scholar 

  18. Long, C., Wong, R.C.-W., Wang, K., Fu, A.W.-C.: Collective spatial keyword queries:a distance owner-driven approach. In: SIGMOD, pp. 689–700. ACM (2013)

    Google Scholar 

  19. Rocha-Junior, J.B., Gkorgkas, O., Jonassen, S., Nørvåg, K.: Efficient processing of top-k spatial keyword queries. In: Pfoser, D., Tao, Y., Mouratidis, K., Nascimento, M.A., Mokbel, M., Shekhar, S., Huang, Y. (eds.) SSTD 2011. LNCS, vol. 6849, pp. 205–222. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22922-0_13

    Chapter  Google Scholar 

  20. Rocha-Junior, J.B., Nørvåg, K.: Top-k spatial keyword queries on road networks. In: EDBT, pp. 168–179. ACM (2012)

    Google Scholar 

  21. Shang, S., Ding, R., Yuan, B., Xie, K., Zheng, K., Kalnis, P.: User oriented trajectory search for trip recommendation. In: EDBT, pp. 156–167. ACM (2012)

    Google Scholar 

  22. Skovsgaard, A., Jensen, C.S.: Finding top-k relevant groups of spatial web objects. VLDBJ 24(4), 537–555 (2015)

    Article  Google Scholar 

  23. Su, S., Zhao, S., Cheng, X., Bi, R., Cao, X., Wang, J.: Group-based collective keyword querying in road networks. Inf. Process. Lett. 118, 83–90 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wu, D., Cong, G., Jensen, C.: A framework for efficient spatial web object retrieval. VLDBJ 21(6), 797–822 (2012)

    Article  Google Scholar 

  25. Wu, D., Yiu, M., Cong, G., Jensen, C.: Joint top-k spatial keyword query processing. TKDE 24(10), 1889–1903 (2012)

    Google Scholar 

  26. Wu, D., Yiu, M.L., Jensen, C.S., Cong, G.: Efficient continuously moving top-k spatial keyword query processing. In: ICDE, pp. 541–552. IEEE (2011)

    Google Scholar 

  27. Zeng, Y., Chen, X., Cao, X., Qin, S., Cavazza, M., Xiang, Y.: Optimal route search with the coverage of users’ preferences. In: IJCAI, pp. 2118–2124 (2015)

    Google Scholar 

  28. Zhang, D., Chee, Y.M., Mondal, A., Tung, A., Kitsuregawa, M.: Keyword search in spatial databases: towards searching by document. In: ICDE, pp. 688–699. IEEE (2009)

    Google Scholar 

  29. Zhang, D., Ooi, B.C., Tung, A.K.H.: Locating mapped resources in web 2.0. In: ICDE, pp. 521–532. IEEE (2010)

    Google Scholar 

  30. Zhang, D., Tan, K.-L., Tung, A.K.H.: Scalable top-k spatial keyword search. In: EDBT/ICDT, pp. 359–370. ACM (2013)

    Google Scholar 

Download references

Acknowledgements

We are grateful to the anonymous reviewers for their constructive comments on this paper. The research of Harry Kai-Ho Chan and Raymond Chi-Wing Wong is supported by HKRGC GRF 16219816.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Kai-Ho Chan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chan, H.KH., Long, C., Wong, R.CW. (2017). Inherent-Cost Aware Collective Spatial Keyword Queries. In: Gertz, M., et al. Advances in Spatial and Temporal Databases. SSTD 2017. Lecture Notes in Computer Science(), vol 10411. Springer, Cham. https://doi.org/10.1007/978-3-319-64367-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-64367-0_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-64366-3

  • Online ISBN: 978-3-319-64367-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy