Skip to main content

Beyond Lesion Detection: Towards Semantic Interpretation of Endoscopy Videos

  • Conference paper
  • First Online:
Engineering Applications of Neural Networks (EANN 2017)

Abstract

Several computer-based medical systems have been proposed for automatic detection of abnormalities in a variety of medical imaging domains. The majority of these systems are based on binary supervised classification algorithms capable of discriminating abnormal from normal image patterns. However, this approach usually does not take into account that the normal content of images is diverse, including various kinds of tissues and artifacts. In the context of gastrointestinal video-endoscopy, which is addressed in this study, the semantics of the normal content include mucosal tissues, the hole of the lumen, bubbles, and debris. In this paper we investigate such a semantic interpretation of the endoscopy video content as an approach to improve lesion detection in a weakly supervised framework. This framework is based on a novel salient point detection algorithm, the bag-of-words image representation technique and multi-label classification. Advantages of the proposed method include: (a) It does not require detailed, pixel-level annotation of training images, instead image-level annotations are sufficient; (b) It enables a richer description of image content, which is beneficial for the discrimination of lesions. The annotation of the multi-labeled training images was performed using a novel annotation tool called RATStream. The results of the experiments performed in a wireless capsule endoscopy dataset with inflammatory lesions promises an improved performance for future generation diagnostic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Ratstream is available upon request to the authors.

  2. 2.

    https://sourceforge.net/projects/juce/.

  3. 3.

    http://opencv.org/.

References

  1. Smeulders, A., Worring, M., Santini, S., et al.: Content-based image retrieval at the end of the early years. IEEE Trans. Pattern Anal. Mach. Intell. 22, 1349–1380 (2000). doi:10.1109/34.895972

    Article  Google Scholar 

  2. Li, H., Liu, L., Sun, F., et al.: Multi-level feature representations for video semantic concept detection. Neurocomputing 172, 64–70 (2016). doi:10.1016/j.neucom.2014.09.096

    Article  Google Scholar 

  3. Iakovidis, D., Koulaouzidis, A.: Software for enhanced video capsule endoscopy: challenges for essential progress. Nat. Rev. Gastroenterol. Hepatol. 12, 172–186 (2015). doi:10.1038/nrgastro.2015.13

    Article  Google Scholar 

  4. Georgakopoulos, S., Iakovidis, D., Vasilakakis, M., et al.: Weakly-supervised convolutional learning for detection of inflammatory gastrointestinal lesions. In: IEEE International Conference on Imaging Systems and Techniques (IST), pp. 510–514. IEEE (2016)

    Google Scholar 

  5. Vasilakakis, M., Iakovidis, D., Spyrou, V., Koulaouzidis, A.: Weakly-supervised lesion detection in video capsule endoscopy based on a bag-of-colour features model. In: International Workshop on Computer-Assisted Robotic Endoscopy (CARE) at International Conference on Medical Image Computing and Computer Assisted Intervention (MICCAI) (2016)

    Google Scholar 

  6. Koulaouzidis, A.: Wireless endoscopy in 2020: will it still be a capsule? World J. Gastroenterol. 21, 5119 (2015). doi:10.3748/wjg.v21.i17.5119

    Article  Google Scholar 

  7. Yung, D., Fernandez-Urien, I., Douglas, S., Plevris, J., Sidhu, R., McAlindon, M., Panter, S., Koulaouzidis, A.: Systematic review and meta-analysis of the performance of nurses in small bowel capsule endoscopy reading. United Eur. Gastroenterol. J., 205064061668723. (2017) doi:10.1177/2050640616687232

  8. Zheng, Y., Hawkins, L., Wolff, J., Goloubeva, O., Goldberg, E.: Detection of lesions during capsule endoscopy: physician performance is disappointing. Am. J. Gastroenterol. 107, 554–560 (2012). doi:10.1038/ajg.2011.461

    Article  Google Scholar 

  9. Iakovidis, D., Sarmiento, R., Silva, J., Histace, A., Romain, O., Koulaouzidis, A., Dehollain, C., Pinna, A., Granado, B., Dray, X.: Towards intelligent capsules for robust wireless endoscopic imaging of the gut. In: IEEE International Conference on Imaging Systems and Techniques, pp. 95–100. IEEE (2014)

    Google Scholar 

  10. Koulaouzidis, A.: Small-bowel capsule endoscopy: a ten-point contemporary review. World J. Gastroenterol. 19, 3726 (2013). doi:10.3748/wjg.v19.i24.3726

    Article  Google Scholar 

  11. Riphaus, A., Richter, S., Vonderach, M., Wehrmann, T.: Capsule Endoscopy Interpretation by an Endoscopy Nurse – a Comparative Trial. Zeitschrift für Gastroenterologie 47, 273–276 (2009). doi:10.1055/s-2008-1027822

    Article  Google Scholar 

  12. Koulaouzidis, A.: KID: Koulaouzidis-iakovidis database for capsule endoscopy (2015). http://is-innovation.eu/kid

  13. Iakovidis, D., Koulaouzidis, A.: Automatic lesion detection in capsule endoscopy based on color saliency: closer to an essential adjunct for reviewing software. Gastrointest. Endosc. 80, 877–883 (2014). doi:10.1016/j.gie.2014.06.026

    Article  Google Scholar 

  14. Hoai, M., Torresani, L., De la Torre, F., Rother, C.: Learning discriminative localization from weakly labeled data. Pattern Recogn. 47, 1523–1534 (2014). doi:10.1016/j.patcog.2013.09.028

    Article  MATH  Google Scholar 

  15. Lowe, D.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004). doi:10.1023/b:visi.0000029664.99615.94

    Article  Google Scholar 

  16. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Comput. Vis. Image Underst. 110, 346–359 (2008). doi:10.1016/j.cviu.2007.09.014

    Article  Google Scholar 

  17. Tuytelaars, T.: Dense interest points. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2281–2288 (2010)

    Google Scholar 

  18. Theodoridis, S., Koutroumbas, K.: Pattern Recognition. Elsevier/Academic Press, Amsterdam (2008)

    MATH  Google Scholar 

  19. Tsoumakas, G., Katakis, I.: Multi-label classification. Int. J. Data Warehouse. Min. 3, 1–13 (2007). doi:10.4018/jdwm.2007070101

    Article  Google Scholar 

  20. Zhang, M., Zhou, Z.: A review on multi-label learning algorithms. IEEE Trans. Knowl. Data Eng. 26, 1819–1837 (2014). doi:10.1109/tkde.2013.39

    Article  Google Scholar 

  21. Zhang, M., Zhou, Z.: ML-KNN: a lazy learning approach to multi-label learning. Pattern Recogn. 40, 2038–2048 (2007). doi:10.1016/j.patcog.2006.12.019

    Article  MATH  Google Scholar 

  22. Elisseeff, A., Weston, J.: A kernel method for multi-labeled classification. In: NIPS, pp. 681–687 (2001)

    Google Scholar 

  23. Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., Brinker, K.: Multilabel classification via calibrated label ranking. Mach. Learn. 73, 133–153 (2008). doi:10.1007/s10994-008-5064-8

    Article  Google Scholar 

  24. Mencia, E., Furnkranz, J.: Pairwise learning of multilabel classifications with perceptrons. In: 2008 IEEE International Joint Conference on Neural Networks, IJCNN 2008, (IEEE World Congress on Computational Intelligence), pp. 2899–2906. IEEE (2008)

    Google Scholar 

  25. Read, J., Pfahringer, B., Holmes, G.: Multi-label classification using ensembles of pruned sets. In: 2008 Eighth IEEE International Conference Data Mining, ICDM 2008 (2008)

    Google Scholar 

  26. Iakovidis, D., Goudas, T., Smailis, C., Maglogiannis, I.: Ratsnake: a versatile image annotation tool with application to computer-aided diagnosis. Sci. World J. 2014, 1–12 (2014). doi:10.1155/2014/286856

    Article  Google Scholar 

  27. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: SLIC superpixels compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal. Mach. Intell. 34, 2274–2282 (2012). doi:10.1109/tpami.2012.120

    Article  Google Scholar 

  28. Fawcett, T.: An introduction to ROC analysis. Pattern Recogn. Lett. 27, 861–874 (2006). doi:10.1016/j.patrec.2005.10.010

    Article  Google Scholar 

  29. Provost, F., Fawcett, T.: Analysis and visualization of classifier performance: comparison under imprecise class and cost distributions. In: KDD, pp. 43–48 (1997)

    Google Scholar 

  30. Witten, I., Frank, E., Hall, M., Pal, C.: Data Mining, 1st edn. Morgan Kaufmann, Amsterdam (2017)

    Google Scholar 

  31. Read, J., Reutemann, P., Pfahringer, B., Holmes, G.: MEKA: a multi-label/multi-target extension to WEKA. J. Mach. Learn. Res. 17, 1–5 (2017)

    MathSciNet  MATH  Google Scholar 

  32. Yuan, Y., Li, B., Meng, M.: Improved bag of feature for automatic polyp detection in wireless capsule endoscopy images. IEEE Trans. Autom. Sci. Eng. 13, 529–535 (2016). doi:10.1109/tase.2015.2395429

    Article  Google Scholar 

Download references

Acknowledgements

The research presented in this paper was financially supported by the project “Klearchos Koulaouzidis” Grant No. 5151 and the Special Account of Research Grants of the University of Thessaly, Greece.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitris K. Iakovidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vasilakakis, M.D., Iakovidis, D.K., Spyrou, E., Chatzis, D., Koulaouzidis, A. (2017). Beyond Lesion Detection: Towards Semantic Interpretation of Endoscopy Videos. In: Boracchi, G., Iliadis, L., Jayne, C., Likas, A. (eds) Engineering Applications of Neural Networks. EANN 2017. Communications in Computer and Information Science, vol 744. Springer, Cham. https://doi.org/10.1007/978-3-319-65172-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65172-9_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65171-2

  • Online ISBN: 978-3-319-65172-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy