Abstract
Robots play an increasingly important role in social life, especially the front desk robots. But the front desk robots seldom handle business in reality unless they have proper functionalities for Human-Robot Interaction (HRI). For enhancing the immersed sense in the interactive process, we consider the 3D image of the upper body of the operator in the remote control room as the upper body of front desk robots. However, it is a great challenge to transmit the 3D point cloud data in the way of remote interaction. The paper uses a simple method to deal with the problem of transmitting the 3D point cloud data and the idea of the method is to reduce the network data volume. In order to reduce the network data volume, we only consider that the 3D point cloud of interest will be transmitted. The filters are used to remove the noise and background of the 3D image, the segmentation algorithm will be used to acquire the 3D point cloud data of interest. The experiment result demonstrates that the method can reduce the network data volume and ensure high-quality image information. Thus, the method can reduce transmission time.
Similar content being viewed by others
References
Ju, Z., Ji, X., Li, J., Liu, H.: An integrative framework of human hand gesture segmentation for human-robot interaction. IEEE Syst. J. (2015). 10.1109/JSYST.2015.2468231
Chen, Q., Gong, P., Baldocchi, D., Xie, G.: Filtering airborne laser scanning data with morphological methods. Photogram. Eng. Remote Sens. 73(2), 175–185 (2007)
Hu, F., Zhao, Y., Wang, W., Huang, X.: Discrete point cloud filtering and searching based on VGSO algorithm. In: ECMS, pp. 850–856 (2013)
Moreno, R., Garcia, M.A., Puig, D.: Graph-based perceptual segmentation of stereo vision 3D images at multiple abstraction levels. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 148–157. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72903-7_14
Bizjak, M.: The segmentation of a point cloud using locally fitted surfaces. In: 2016 18th Mediterranean Electrotechnical Conference (MELECON), pp. 1–6. IEEE (2016)
Wählby, C., Sintorn, I.M., Erlandsson, F., Borgefors, G., Bengtsson, E.: Combining intensity, edge and shape information for 2d and 3d segmentation of cell nuclei in tissue sections. J. Microsc. 215(1), 67–76 (2004)
Rabbani, T., Van Den Heuvel, F., Vosselmann, G.: Segmentation of point clouds using smoothness constraint. Int. Arch. Photogram. Rem. Sens. Spat. Inf. Sci. 36(5), 248–253 (2006)
Chen, J., Chen, B.: Architectural modeling from sparsely scanned range data. Int. J. Comput. Vis. 78(2–3), 223–236 (2008)
Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)
Strom, J., Richardson, A., Olson, E.: Graph-based segmentation for colored 3d laser point clouds. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2131–2136. IEEE (2010)
Yang, J., Duncan, J.S.: 3d image segmentation of deformable objects with joint shape-intensity prior models using level sets. Med. Image Anal. 8(3), 285–294 (2004)
Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detection. In: Computer Graphics Forum, vol. 26, pp. 214–226. Wiley Online Library (2007)
Balafar, M.: Gaussian mixture model based segmentation methods for brain MRI images. Artif. Intell. Rev. 41(3), 429–439 (2014)
Birk, A., Schwertfeger, S., Pathak, K., Vaskevicius, N.: 3d data collection at disaster city at the 2008 NIST response robot evaluation exercise (RREE). In: 2009 IEEE International Workshop on Safety, Security & Rescue Robotics (SSRR), pp. 1–6. IEEE (2009)
Poppinga, J., Vaskevicius, N., Birk, A., Pathak, K.: Fast plane detection and polygonalization in noisy 3d range images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3378–3383. IEEE (2008)
Wiemann, T., Nüchter, A., Lingemann, K., Stiene, S., Hertzberg, J.: Automatic construction of polygonal maps from point cloud data. In: 2010 IEEE International Workshop on Safety Security and Rescue Robotics (SSRR), pp. 1–6. IEEE (2010)
Murphy, R.R.: Trial by fire [rescue robots]. IEEE Robot. Autom. Mag. 11(3), 50–61 (2004)
Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3d point cloud based object maps for household environments. Robot. Auton. Syst. 56(11), 927–941 (2008)
Ju, Z., Gao, D., Cao, J., Liu, H.: A novel approach to extract hand gesture feature in depth images. Multimedia Tools Appl. 75(19), 11929–11943 (2016)
Chum, O., Matas, J.: Randomized RANSAC with Td, d test. In: Proceedings of British Machine Vision Conference, vol. 2, pp. 448–457 (2002)
Acknowledgments
This work was partially supported by National Nature Science Foundation (NSFC) under Grant 61473120, Guangdong Provincial Natural Science Foundation 2014A030313266 and International Science and Technology Collaboration Grant 2015A050502017, Science and Technology Planning Project of Guangzhou 201607010006, State Key Laboratory of Robotics and System (HIT) Grant SKLRS-2017-KF-13, and the Fundamental Research Funds for the Central Universities 2017ZD057.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Wang, Z., Yang, C., Ju, Z., Li, Z., Su, CY. (2017). Preprocessing and Transmission for 3D Point Cloud Data. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10462. Springer, Cham. https://doi.org/10.1007/978-3-319-65289-4_42
Download citation
DOI: https://doi.org/10.1007/978-3-319-65289-4_42
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65288-7
Online ISBN: 978-3-319-65289-4
eBook Packages: Computer ScienceComputer Science (R0)