Skip to main content

Preprocessing and Transmission for 3D Point Cloud Data

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10462))

Included in the following conference series:

Abstract

Robots play an increasingly important role in social life, especially the front desk robots. But the front desk robots seldom handle business in reality unless they have proper functionalities for Human-Robot Interaction (HRI). For enhancing the immersed sense in the interactive process, we consider the 3D image of the upper body of the operator in the remote control room as the upper body of front desk robots. However, it is a great challenge to transmit the 3D point cloud data in the way of remote interaction. The paper uses a simple method to deal with the problem of transmitting the 3D point cloud data and the idea of the method is to reduce the network data volume. In order to reduce the network data volume, we only consider that the 3D point cloud of interest will be transmitted. The filters are used to remove the noise and background of the 3D image, the segmentation algorithm will be used to acquire the 3D point cloud data of interest. The experiment result demonstrates that the method can reduce the network data volume and ensure high-quality image information. Thus, the method can reduce transmission time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Ju, Z., Ji, X., Li, J., Liu, H.: An integrative framework of human hand gesture segmentation for human-robot interaction. IEEE Syst. J. (2015). 10.1109/JSYST.2015.2468231

  2. Chen, Q., Gong, P., Baldocchi, D., Xie, G.: Filtering airborne laser scanning data with morphological methods. Photogram. Eng. Remote Sens. 73(2), 175–185 (2007)

    Article  Google Scholar 

  3. Hu, F., Zhao, Y., Wang, W., Huang, X.: Discrete point cloud filtering and searching based on VGSO algorithm. In: ECMS, pp. 850–856 (2013)

    Google Scholar 

  4. Moreno, R., Garcia, M.A., Puig, D.: Graph-based perceptual segmentation of stereo vision 3D images at multiple abstraction levels. In: Escolano, F., Vento, M. (eds.) GbRPR 2007. LNCS, vol. 4538, pp. 148–157. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72903-7_14

    Chapter  Google Scholar 

  5. Bizjak, M.: The segmentation of a point cloud using locally fitted surfaces. In: 2016 18th Mediterranean Electrotechnical Conference (MELECON), pp. 1–6. IEEE (2016)

    Google Scholar 

  6. Wählby, C., Sintorn, I.M., Erlandsson, F., Borgefors, G., Bengtsson, E.: Combining intensity, edge and shape information for 2d and 3d segmentation of cell nuclei in tissue sections. J. Microsc. 215(1), 67–76 (2004)

    Google Scholar 

  7. Rabbani, T., Van Den Heuvel, F., Vosselmann, G.: Segmentation of point clouds using smoothness constraint. Int. Arch. Photogram. Rem. Sens. Spat. Inf. Sci. 36(5), 248–253 (2006)

    Google Scholar 

  8. Chen, J., Chen, B.: Architectural modeling from sparsely scanned range data. Int. J. Comput. Vis. 78(2–3), 223–236 (2008)

    Article  Google Scholar 

  9. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient graph-based image segmentation. Int. J. Comput. Vis. 59(2), 167–181 (2004)

    Article  Google Scholar 

  10. Strom, J., Richardson, A., Olson, E.: Graph-based segmentation for colored 3d laser point clouds. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 2131–2136. IEEE (2010)

    Google Scholar 

  11. Yang, J., Duncan, J.S.: 3d image segmentation of deformable objects with joint shape-intensity prior models using level sets. Med. Image Anal. 8(3), 285–294 (2004)

    Article  Google Scholar 

  12. Schnabel, R., Wahl, R., Klein, R.: Efficient RANSAC for point-cloud shape detection. In: Computer Graphics Forum, vol. 26, pp. 214–226. Wiley Online Library (2007)

    Google Scholar 

  13. Balafar, M.: Gaussian mixture model based segmentation methods for brain MRI images. Artif. Intell. Rev. 41(3), 429–439 (2014)

    Article  Google Scholar 

  14. Birk, A., Schwertfeger, S., Pathak, K., Vaskevicius, N.: 3d data collection at disaster city at the 2008 NIST response robot evaluation exercise (RREE). In: 2009 IEEE International Workshop on Safety, Security & Rescue Robotics (SSRR), pp. 1–6. IEEE (2009)

    Google Scholar 

  15. Poppinga, J., Vaskevicius, N., Birk, A., Pathak, K.: Fast plane detection and polygonalization in noisy 3d range images. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 3378–3383. IEEE (2008)

    Google Scholar 

  16. Wiemann, T., Nüchter, A., Lingemann, K., Stiene, S., Hertzberg, J.: Automatic construction of polygonal maps from point cloud data. In: 2010 IEEE International Workshop on Safety Security and Rescue Robotics (SSRR), pp. 1–6. IEEE (2010)

    Google Scholar 

  17. Murphy, R.R.: Trial by fire [rescue robots]. IEEE Robot. Autom. Mag. 11(3), 50–61 (2004)

    Article  Google Scholar 

  18. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3d point cloud based object maps for household environments. Robot. Auton. Syst. 56(11), 927–941 (2008)

    Article  Google Scholar 

  19. Ju, Z., Gao, D., Cao, J., Liu, H.: A novel approach to extract hand gesture feature in depth images. Multimedia Tools Appl. 75(19), 11929–11943 (2016)

    Article  Google Scholar 

  20. Chum, O., Matas, J.: Randomized RANSAC with Td, d test. In: Proceedings of British Machine Vision Conference, vol. 2, pp. 448–457 (2002)

    Google Scholar 

Download references

Acknowledgments

This work was partially supported by National Nature Science Foundation (NSFC) under Grant 61473120, Guangdong Provincial Natural Science Foundation 2014A030313266 and International Science and Technology Collaboration Grant 2015A050502017, Science and Technology Planning Project of Guangzhou 201607010006, State Key Laboratory of Robotics and System (HIT) Grant SKLRS-2017-KF-13, and the Fundamental Research Funds for the Central Universities 2017ZD057.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chenguang Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Wang, Z., Yang, C., Ju, Z., Li, Z., Su, CY. (2017). Preprocessing and Transmission for 3D Point Cloud Data. In: Huang, Y., Wu, H., Liu, H., Yin, Z. (eds) Intelligent Robotics and Applications. ICIRA 2017. Lecture Notes in Computer Science(), vol 10462. Springer, Cham. https://doi.org/10.1007/978-3-319-65289-4_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65289-4_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65288-7

  • Online ISBN: 978-3-319-65289-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy