Skip to main content

A Recommender Model of Teaching-Learning Techniques

  • Conference paper
  • First Online:
Progress in Artificial Intelligence (EPIA 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10423))

Included in the following conference series:

Abstract

Learning contents creation supported on computer tools has triggered the scientific community for a couple of decades. However, teachers have been facing more and different challenges, namely the emergence of other delivery learning approaches besides the traditional educational settings, the diversification of the student target population, and the recognition of different ways of learning. In education domain, diverse recommender systems have been developed so far for recommending learning activities and more specifically, learning objects. This research work is focused on teaching-learning techniques recommendation to assist teachers by providing them recommendation about which teaching-learning techniques should scaffold teaching-learning activities to be carried out by students. This paper presents a recommender model sustained in diverse elements, namely, a hybrid recommender system, an association rules mechanism to infer possible combinations of teaching-learning techniques, and collaborative work among several actors in education. An evaluation is carried out and the preliminary results are very encouraging, revealing that teachers seem very enthusiastic and motivated to rethink their teaching-learning techniques when designing teaching-learning activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Collis, B.: Tecnología de la Información en la Educación Superior: Paradigmas Emergentes. In: Revista de Universidad y Sociadad del Conocimiento 2(2) (2006). ISSN 1698-580X

    Google Scholar 

  2. Dias, S.B., Diniz, J.A., Hadjileontiadis, L.J.: Embracing and embedding techno-pedagogical strategies. In: Dias, S.B., Diniz, J.A., Hadjileontiadis, L.J. (eds.) Towards an Intelligent Learning Management System Under Blended Learning, vol. 59, pp. 35–51. Springer, Heidelberg (2014). doi:10.1007/978-3-319-02078-5_3

    Google Scholar 

  3. Sharpe, R., Beetham, H., Freitas, S.: Rethinking learning for a digital age: how learners are shaping their own experiences. In: Sharpe, R., Beetham, H., Freitas, S. (eds.) Taylor & Francis Group, Routledge (2010). ISBN 978-0-415-87543-1

    Google Scholar 

  4. Cameron, L.: How learning design can illuminate teaching practice. In: The Future of Learning Design Conference, Paper 3, 10 December (2009). http://ro.uow.edu.au/fld/09/Program/3. Accessed May 2011

  5. Koper, E.J.R.: An introduction to learning design. In: Koper, R., Tattersall, C. (eds.) A Handbook on Modelling and Delivering Networked Education and Training, pp. 3–20. Springer, Berlin (2005). doi:10.1007/3-540-27360-3_1. ISBN 3-540-22814-4

  6. Beetham, H.: An approach to learning activity design. In: Beetham, H., Sharpe, R. (eds.) Rethinking Pedagogy for a Digital Age. Designing and Delivering e-learning, Taylor & Francis Group, Routledge (2007). ISBN 978-0-415-40874-5

    Google Scholar 

  7. Mota, D., Reis, L.P., Carvalho, C.V.: Design of learning activities – pedagogy, technology and delivery trends. EAI Endorsed Trans. e-Learning 14(4), e5 (2014)

    Article  Google Scholar 

  8. Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, Heidelberg (2001). ISBN 978-3-662-04398-1

    Google Scholar 

  9. Jannach, D., Zanker, M., Ge, M., Gröning, M.: Recommender systems in computer science and information systems - a landscape of research. In: Huemer, C., Lops, P. (eds.) E-Commerce and Web Technologies. EC-Web 2012. LNBIP, vol. 123, pp. 76–87. Springer (2012). doi:10.1007/978-3-642-32273-0_7

    Google Scholar 

  10. Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Heidelberg (2011). doi:10.1007/978-0-387-85820-3_1

    MATH  Google Scholar 

  11. Aggarwal, C.: Recommender Systems: The Textbook. Springer International Publishing, Switzerland (2016). ISBN 978-3319296579

    Google Scholar 

  12. Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapted Interact. 12(4), 331–370 (2002)

    Article  Google Scholar 

  13. Pazzani, M., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Wolfgang, N. (eds.) The Adaptive Web - Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_10

  14. Schafer, J., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Wolfgang, N. (eds.) The Adaptive Web - Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_9

  15. Ekstrand, M., Riedl, J., Konstan, J.: Collaborative filtering recommender systems. Hum.-Comput. Interact. 4(2), 81–173 (2010)

    Google Scholar 

  16. Abreu, P., Silva, D., Almeida, F.: Improving a simulated soccer team’s performance through a memory–based collaborative filtering approach. Appl. Soft Comput. 23, 180–193 (2014). Elsevier

    Article  Google Scholar 

  17. Chavarriaga, O., Florian-Gaviria, B., Solarte, O.: A recommender system for students based on social knowledge and assessment data of competences. In: Rensing, C. et al. (eds.) EC-TEL 2014. LNCS, vol. 8719, pp. 56–69. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11200-8_5

    Chapter  Google Scholar 

  18. Imran, H., Belghis-Zadeh, M., Chang, T., Kinshuk, G.S.: PLORS: a personalized learning recommender system. Vietnam J. Comput. Sci. 3(1), 3–13 (2016). Springer

    Google Scholar 

  19. Casali, A., Gerling, V., Deco, C., Bender, C.: A recommender system for learning objects personalized retrieval. Educational recommender systems and technologies: practices and challenges.Educational. In: Santos, O., Boticario, J. (eds.) Recommender Systems and Technologies: Practices and Challenges, pp. 182–201 (2011). ISBN 978-1613504895

    Chapter  Google Scholar 

  20. Sicilia, M.-Á., Lytras, M., Sánchez-Alonso, S., García-Barriocanal, E.: Modeling instructional-design theories with ontologies: using methods to check, generate and search learning designs. Comput. Hum. Behav. 27, 1389–1398 (2011)

    Article  Google Scholar 

  21. Hayashi, Y., Bourdeau, J., Mizoguchi, R.: Using ontological engineering to organize learning/instructional theories and build a theory-aware authoring system. Artif. Intell. Educ. 12(2), 211–252 (2009)

    Google Scholar 

  22. Vesin, B., Ivanović, M., Klašnja-Milićević, A., Budimac, Z.: Ontology-based archiecture with recommendation strategy in Java tutoring system. Comput. Sci. Inf. Syst. 10(1), 237–261 (2013)

    Article  Google Scholar 

  23. Valaski, J., Malucelli, A., Reinehr, S.: Recommending learning materials according to ontology-based learning styles. In: Proceedings of International Conference on Information Technology and Application, pp. 71–75 (2011)

    Google Scholar 

  24. Yu, Z., Nakamura, Y., Jang, S., Kajita, S., Mase, K.: Ontology-based semantic recommendation for context-aware e-learning. In: Indulska, J. et al. UIC 2007. LNCS, vol. 4611, pp. 898–907. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73549-6_88

  25. Amorim, R., Lama, M., Sánchez, E., Riera, A., Vila, X.: A learning design ontology based on the IMS specification. Educ. Technol. Soc. 9(1), 38–57 (2006)

    Google Scholar 

  26. Kalou, A., Solomou, G., Pierrakeas, C., Kameas, A.: An ontology model for building, classifying and using learning outcomes. In: IEEE International Conference on Advanced Learning Technologies, pp. 61–65. IEEE Computer Society (2012)

    Google Scholar 

  27. Draganidis, F., Chamopoulou, P., Mentzas, G.: A semantic web archiecture for integrating competence management and learning paths. J. Knowl. Manag. 12(6), 121–136 (2008)

    Article  Google Scholar 

  28. Cassel, L.: Using a computing ontology in curriculum development. In: Dicheva, D., Mizoguchi, R., Greer, J. (eds.) Semantic Web Technologies for e-Learning, pp. 44–56. IOS Press (2009)

    Google Scholar 

  29. Nganji, J., Brayshaw, M., Tompsett, B.: Ontology-based e-learning personalisation for disabled students in higher education. Innov. Teach. Learn. Inf. Comput. Sci. 10(1), 1–11 (2011)

    Article  Google Scholar 

  30. Javanović, J.: Generating context-related feedback for teachers. Int. J. Technol. Enhanced Learn. 1(1/2), 47–69 (2008)

    Article  Google Scholar 

  31. Mota, D., Reis, L.P., Carvalho, C.V.: OTILIA – an architecture for the recommendation of teaching-learning techniques supported by an ontological approach. In: Proceedings of the 44th IEEE Frontiers in Education Conference, Madrid, Spain, pp. 22–25 (2014)

    Google Scholar 

  32. Agrawal, R.: Mining association rules between sets of items in large databases. In: Proceeding of the 1993 ACM SIGMOD Conference, Washington, pp. 207–216 (1993)

    Google Scholar 

  33. More, N.: Recommenation of books using improved apriori algoritm. Int. J. Innov. Res. Sci. Technol. 1(4), 80–82 (2014)

    Google Scholar 

  34. Sá, C., Soares, C., Jorge, A.M., Azevedo, P., Costa, J.: Mining association rules for label ranking. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, vol. 6635, pp. 432–443. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20847-8_36

    Chapter  Google Scholar 

Download references

Acknowledgments

This research has been supported in part by LIACC and GILT labs. At an earlier stage, the PROTEC advanced program of the responsibility of IPP (Instituto Politécnico do Porto) was conceived to support teachers rolled in PhD courses releasing them from teaching work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dulce Mota .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Mota, D., Reis, L.P., de Carvalho, C.V. (2017). A Recommender Model of Teaching-Learning Techniques. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science(), vol 10423. Springer, Cham. https://doi.org/10.1007/978-3-319-65340-2_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-65340-2_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-65339-6

  • Online ISBN: 978-3-319-65340-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy