Abstract
Learning contents creation supported on computer tools has triggered the scientific community for a couple of decades. However, teachers have been facing more and different challenges, namely the emergence of other delivery learning approaches besides the traditional educational settings, the diversification of the student target population, and the recognition of different ways of learning. In education domain, diverse recommender systems have been developed so far for recommending learning activities and more specifically, learning objects. This research work is focused on teaching-learning techniques recommendation to assist teachers by providing them recommendation about which teaching-learning techniques should scaffold teaching-learning activities to be carried out by students. This paper presents a recommender model sustained in diverse elements, namely, a hybrid recommender system, an association rules mechanism to infer possible combinations of teaching-learning techniques, and collaborative work among several actors in education. An evaluation is carried out and the preliminary results are very encouraging, revealing that teachers seem very enthusiastic and motivated to rethink their teaching-learning techniques when designing teaching-learning activities.
Similar content being viewed by others
References
Collis, B.: Tecnología de la Información en la Educación Superior: Paradigmas Emergentes. In: Revista de Universidad y Sociadad del Conocimiento 2(2) (2006). ISSN 1698-580X
Dias, S.B., Diniz, J.A., Hadjileontiadis, L.J.: Embracing and embedding techno-pedagogical strategies. In: Dias, S.B., Diniz, J.A., Hadjileontiadis, L.J. (eds.) Towards an Intelligent Learning Management System Under Blended Learning, vol. 59, pp. 35–51. Springer, Heidelberg (2014). doi:10.1007/978-3-319-02078-5_3
Sharpe, R., Beetham, H., Freitas, S.: Rethinking learning for a digital age: how learners are shaping their own experiences. In: Sharpe, R., Beetham, H., Freitas, S. (eds.) Taylor & Francis Group, Routledge (2010). ISBN 978-0-415-87543-1
Cameron, L.: How learning design can illuminate teaching practice. In: The Future of Learning Design Conference, Paper 3, 10 December (2009). http://ro.uow.edu.au/fld/09/Program/3. Accessed May 2011
Koper, E.J.R.: An introduction to learning design. In: Koper, R., Tattersall, C. (eds.) A Handbook on Modelling and Delivering Networked Education and Training, pp. 3–20. Springer, Berlin (2005). doi:10.1007/3-540-27360-3_1. ISBN 3-540-22814-4
Beetham, H.: An approach to learning activity design. In: Beetham, H., Sharpe, R. (eds.) Rethinking Pedagogy for a Digital Age. Designing and Delivering e-learning, Taylor & Francis Group, Routledge (2007). ISBN 978-0-415-40874-5
Mota, D., Reis, L.P., Carvalho, C.V.: Design of learning activities – pedagogy, technology and delivery trends. EAI Endorsed Trans. e-Learning 14(4), e5 (2014)
Fensel, D.: Ontologies: A Silver Bullet for Knowledge Management and Electronic Commerce. Springer, Heidelberg (2001). ISBN 978-3-662-04398-1
Jannach, D., Zanker, M., Ge, M., Gröning, M.: Recommender systems in computer science and information systems - a landscape of research. In: Huemer, C., Lops, P. (eds.) E-Commerce and Web Technologies. EC-Web 2012. LNBIP, vol. 123, pp. 76–87. Springer (2012). doi:10.1007/978-3-642-32273-0_7
Ricci, F., Rokach, L., Shapira, B.: Introduction to recommender systems. In: Ricci, F., Rokach, L., Shapira, B., Kantor, P. (eds.) Recommender Systems Handbook, pp. 1–35. Springer, Heidelberg (2011). doi:10.1007/978-0-387-85820-3_1
Aggarwal, C.: Recommender Systems: The Textbook. Springer International Publishing, Switzerland (2016). ISBN 978-3319296579
Burke, R.: Hybrid recommender systems: survey and experiments. User Model. User-Adapted Interact. 12(4), 331–370 (2002)
Pazzani, M., Billsus, D.: Content-based recommendation systems. In: Brusilovsky, P., Kobsa, A., Wolfgang, N. (eds.) The Adaptive Web - Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 325–341. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_10
Schafer, J., Frankowski, D., Herlocker, J., Sen, S.: Collaborative filtering recommender systems. In: Brusilovsky, P., Kobsa, A., Wolfgang, N. (eds.) The Adaptive Web - Methods and Strategies of Web Personalization. LNCS, vol. 4321, pp. 291–324. Springer, Heidelberg (2007). doi:10.1007/978-3-540-72079-9_9
Ekstrand, M., Riedl, J., Konstan, J.: Collaborative filtering recommender systems. Hum.-Comput. Interact. 4(2), 81–173 (2010)
Abreu, P., Silva, D., Almeida, F.: Improving a simulated soccer team’s performance through a memory–based collaborative filtering approach. Appl. Soft Comput. 23, 180–193 (2014). Elsevier
Chavarriaga, O., Florian-Gaviria, B., Solarte, O.: A recommender system for students based on social knowledge and assessment data of competences. In: Rensing, C. et al. (eds.) EC-TEL 2014. LNCS, vol. 8719, pp. 56–69. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11200-8_5
Imran, H., Belghis-Zadeh, M., Chang, T., Kinshuk, G.S.: PLORS: a personalized learning recommender system. Vietnam J. Comput. Sci. 3(1), 3–13 (2016). Springer
Casali, A., Gerling, V., Deco, C., Bender, C.: A recommender system for learning objects personalized retrieval. Educational recommender systems and technologies: practices and challenges.Educational. In: Santos, O., Boticario, J. (eds.) Recommender Systems and Technologies: Practices and Challenges, pp. 182–201 (2011). ISBN 978-1613504895
Sicilia, M.-Á., Lytras, M., Sánchez-Alonso, S., García-Barriocanal, E.: Modeling instructional-design theories with ontologies: using methods to check, generate and search learning designs. Comput. Hum. Behav. 27, 1389–1398 (2011)
Hayashi, Y., Bourdeau, J., Mizoguchi, R.: Using ontological engineering to organize learning/instructional theories and build a theory-aware authoring system. Artif. Intell. Educ. 12(2), 211–252 (2009)
Vesin, B., Ivanović, M., Klašnja-Milićević, A., Budimac, Z.: Ontology-based archiecture with recommendation strategy in Java tutoring system. Comput. Sci. Inf. Syst. 10(1), 237–261 (2013)
Valaski, J., Malucelli, A., Reinehr, S.: Recommending learning materials according to ontology-based learning styles. In: Proceedings of International Conference on Information Technology and Application, pp. 71–75 (2011)
Yu, Z., Nakamura, Y., Jang, S., Kajita, S., Mase, K.: Ontology-based semantic recommendation for context-aware e-learning. In: Indulska, J. et al. UIC 2007. LNCS, vol. 4611, pp. 898–907. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73549-6_88
Amorim, R., Lama, M., Sánchez, E., Riera, A., Vila, X.: A learning design ontology based on the IMS specification. Educ. Technol. Soc. 9(1), 38–57 (2006)
Kalou, A., Solomou, G., Pierrakeas, C., Kameas, A.: An ontology model for building, classifying and using learning outcomes. In: IEEE International Conference on Advanced Learning Technologies, pp. 61–65. IEEE Computer Society (2012)
Draganidis, F., Chamopoulou, P., Mentzas, G.: A semantic web archiecture for integrating competence management and learning paths. J. Knowl. Manag. 12(6), 121–136 (2008)
Cassel, L.: Using a computing ontology in curriculum development. In: Dicheva, D., Mizoguchi, R., Greer, J. (eds.) Semantic Web Technologies for e-Learning, pp. 44–56. IOS Press (2009)
Nganji, J., Brayshaw, M., Tompsett, B.: Ontology-based e-learning personalisation for disabled students in higher education. Innov. Teach. Learn. Inf. Comput. Sci. 10(1), 1–11 (2011)
Javanović, J.: Generating context-related feedback for teachers. Int. J. Technol. Enhanced Learn. 1(1/2), 47–69 (2008)
Mota, D., Reis, L.P., Carvalho, C.V.: OTILIA – an architecture for the recommendation of teaching-learning techniques supported by an ontological approach. In: Proceedings of the 44th IEEE Frontiers in Education Conference, Madrid, Spain, pp. 22–25 (2014)
Agrawal, R.: Mining association rules between sets of items in large databases. In: Proceeding of the 1993 ACM SIGMOD Conference, Washington, pp. 207–216 (1993)
More, N.: Recommenation of books using improved apriori algoritm. Int. J. Innov. Res. Sci. Technol. 1(4), 80–82 (2014)
Sá, C., Soares, C., Jorge, A.M., Azevedo, P., Costa, J.: Mining association rules for label ranking. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, vol. 6635, pp. 432–443. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20847-8_36
Acknowledgments
This research has been supported in part by LIACC and GILT labs. At an earlier stage, the PROTEC advanced program of the responsibility of IPP (Instituto Politécnico do Porto) was conceived to support teachers rolled in PhD courses releasing them from teaching work.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Mota, D., Reis, L.P., de Carvalho, C.V. (2017). A Recommender Model of Teaching-Learning Techniques. In: Oliveira, E., Gama, J., Vale, Z., Lopes Cardoso, H. (eds) Progress in Artificial Intelligence. EPIA 2017. Lecture Notes in Computer Science(), vol 10423. Springer, Cham. https://doi.org/10.1007/978-3-319-65340-2_36
Download citation
DOI: https://doi.org/10.1007/978-3-319-65340-2_36
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-65339-6
Online ISBN: 978-3-319-65340-2
eBook Packages: Computer ScienceComputer Science (R0)