Abstract
Social networks are intensively and extensively used to exchange news and contents in real time. The lack of a global authority for assessing posts truthfulness however allows malicious to exhibit unfair behaviours; identifying methodologies to detect hoaxes and defamatory content automatically is therefore more and more required. Social networks as Facebook and Twitter provided specific solutions and general approaches were also developed; in this paper we present a general model that takes into account both post as well as users’ credibility, using a duplex network of acquaintances and credibility among users. First experiments show that it is possible to distinguish individuals who post non-truthful content through a combined analysis of both the news content and the reposts they get from their contacts.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Peysakhovich, H.: News feed FYI: Further reducing clickbait in feed. http://newsroom.fb.com/news/2016/08/news-feed-fyi-further-reducing-clickbait-in-feed/. Accessed Mar 2017
Jeyaraman: Fighting spam with botmaker. https://blog.twitter.com/2014/fighting-spam-with-botmaker. Accessed Mar 2017
Jin, Z., Cao, J., Jiang, Y.G., Zhang, Y.: News credibility evaluation on microblog with a hierarchical propagation model. In: 2014 IEEE International Conference on Data Mining (ICDM), pp. 230–239. IEEE (2014)
Kwon, S., Cha, M.: Modeling bursty temporal pattern of rumors. In: ICWSM. (2014)
Kwon, S., Cha, M., Jung, K., Chen, W., Wang, Y.: Prominent features of rumor propagation in online social media. In: 2013 IEEE 13th International Conference on Data Mining (ICDM), pp. 1103–1108. IEEE (2013)
Ma, J., Gao, W., Wei, Z., Lu, Y., Wong, K.F.: Detect rumors using time series of social context information on microblogging websites. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 1751–1754. ACM (2015)
Zhao, Z., Resnick, P., Mei, Q.: Enquiring minds: Early detection of rumors in social media from enquiry posts. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1395–1405. ACM (2015)
Egele, M., Stringhini, G., Kruegel, C., Vigna, G.: Compa: Detecting compromised accounts on social networks. In: NDSS (2013)
Martinez-Romo, J., Araujo, L.: Detecting malicious tweets in trending topics using a statistical analysis of language. Expert Syst. Appl. 40(8), 2992–3000 (2013)
Wang, A.H.: Don’t follow me: spam detection in twitter. In: Proceedings of the 2010 International Conference on Security and Cryptography (SECRYPT), pp. 1–10. IEEE (2010)
O’Callaghan, D., Harrigan, M., Carthy, J., Cunningham, P.: Identifying discriminating network motifs in youtube spam (2012). arXiv preprint arXiv:1202.5216
Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Users’ attachment in trust networks: reputation vs. effort. IJBIC 5(4), 199–209 (2013)
Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Trust assessment: a personalized, distributed, and secure approach. Concurr. Comput. Pract. Exp. 24(6), 605–617 (2012)
Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Trusting evaluation by social reputation. In Badica, C., Mangioni, G., Carchiolo, V., Burdescu, D.D. (eds.): IDC II—Proceedings of the 2th IDC, 2008, Catania, Italy, 2008. vol. 162 of Studies in Computational Intelligence, pp. 75–84. Springer (2008)
Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G.: Gain the best reputation in trust networks. In: IDC V—Proceedings of the 5th IDC 2011, Delft, The Netherlands, pp. 213–218 (2011)
Criado, R., Flores, J., García del Amo, A., Gómez-Gardeñes, J., Romance, M.: A mathematical model for networks with structures in the mesoscale. Int. J. Comput. Math. 89(3), 291–309 (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Carchiolo, V., Longheu, A., Malgeri, M., Mangioni, G., Previti, M. (2018). Post Sharing-Based Credibility Network for Social Network. In: Ivanović, M., Bădică, C., Dix, J., Jovanović, Z., Malgeri, M., Savić, M. (eds) Intelligent Distributed Computing XI. IDC 2017. Studies in Computational Intelligence, vol 737. Springer, Cham. https://doi.org/10.1007/978-3-319-66379-1_14
Download citation
DOI: https://doi.org/10.1007/978-3-319-66379-1_14
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66378-4
Online ISBN: 978-3-319-66379-1
eBook Packages: EngineeringEngineering (R0)