Abstract
The paper considers the problem of planning a set of non-conflict trajectories for the coalition of intelligent agents (mobile robots). Two divergent approaches, e.g. centralized and decentralized, are surveyed and analyzed. Decentralized planner – MAPP is described and applied to the task of finding trajectories for dozens UAVs performing nap-of-the-earth flight in urban environments. Results of the experimental studies provide an opportunity to claim that MAPP is a highly efficient planner for solving considered types of tasks.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Koenig, S., Likhachev, M.: D* lite. In: Proceedings of the AAAI Conference of Artificial Intelligence (AAAI), pp. 476–483 (2002)
Magid, E., Keren, D., Rivlin, E., Yavneh, I.: Spline-based robot navigation. In: Proceedings of 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Beijing, China, 9–15 October 2006, pp. 2296–2301 (2006)
Yakovlev, K., Baskin, E., Hramoin, I.: Grid-based angle-constrained path planning. In: Hölldobler, S., Krötzsch, M., Peñaloza, R., Rudolph, S. (eds.) KI 2015. LNCS, vol. 9324, pp. 208–221. Springer, Cham (2015). doi:10.1007/978-3-319-24489-1_16
Harabor, D., Grastien, A., Öz, D., Aksakalli, V.: Optimal any-angle pathfinding in practice. J. Artif. Intell. Res. (JAIR) 56, 89–118 (2016)
Hopcroft, J., Schwartz, J., Sharir, M.: On the complexity of motion planning for multiple independent objects; PSPACE-hardness of the “warehouseman’s problem”. Int. J. Robot. Res. 3(4), 76–88 (1984)
Lozano-Pérez, T., Wesley, M.A.: An algorithm for planning collision-free paths among polyhedral obstacles. Commun. ACM 22(10), 560–570 (1979)
Bhattacharya, P., Gavrilova, M.L.: Roadmap-based path planning - using the Voronoi diagram for a clearance-based shortest path. IEEE Robot. Autom. Mag. 15(2), 58–66 (2008)
Kallmann, M.: Navigation queries from triangular meshes. In: Boulic, R., Chrysanthou, Y., Komura, T. (eds.) MIG 2010. LNCS, vol. 6459, pp. 230–241. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16958-8_22
Yap, P.: Grid-based path-finding. In: Cohen, R., Spencer, B. (eds.) AI 2002. LNCS, vol. 2338, pp. 44–55. Springer, Heidelberg (2002). doi:10.1007/3-540-47922-8_4
Elfes, A.: Using occupancy grids for mobile robot perception and navigation. Computer 22(6), 46–57 (1989)
Standley, T.: Finding optimal solutions to cooperative pathfinding problems. In: Proceedings of The 24th AAAI Conference on Artificial Intelligence (AAAI-2010), pp. 173–178 (2010)
Hart, P., Nilsson, N., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci. Cybern. 4(2), 100–107 (1968)
Sharon, G., Stern, R., Felner, A., Sturtevant, N.R.: Conflict-based search for optimal multi-agent pathfinding. Artif. Intell. 219, 40–66 (2015)
Boyarski, E., Felner, A., Stern, R., Sharon, F., Tolpin, D., Betzalel, D., Shimony, S.: ICBS: improved conflict-based search algorithm for multi-agent pathfinding. In: Proceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI-2015), pp. 740–746 (2015)
Wagner, G., Choset, H.: M*: a complete multirobot path planning algorithm with performance bounds. In: Proceedings of The 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS-2011), pp. 3260–3267 (2011)
Standley, T., Korf, R.: Complete algorithms for cooperative pathfinding problems. In: Proceedings of The 22d International Joint Conference on Artificial Intelligence (IJCAI-2011), vol. 1, pp. 668–673. AAAI Press (2011)
Barer, M., Sharon, G., Stern, R., Felner, A.: Suboptimal variants of the conflict-based search algorithm for the multi-agent pathfinding problem. In: Proceedings of the 7th Annual Symposium on Combinatorial Search (SOCS-2014), pp. 19–27 (2014)
Erdmann, M., Lozano-Pérez, T.: On multiple moving objects. Algorithmica 2, 1419–1424 (1987)
Zelinsky, A.: A mobile robot exploration algorithm. IEEE Trans. Robot. Autom. 8(6), 707–717 (1992)
Silver, D.: Cooperative pathfinding. In: Proceedings of the 1st Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE-2005), pp. 117–122 (2005)
Bnaya, Z., Felner, A.: Conflict-oriented windowed hierarchical cooperative A\({^\ast }\). In: Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA-2014), pp. 3743–3748 (2014)
Wang, K.-H.C., Botea, A.: Tractable multi-agent path planning on grid maps. In: Proceedings of the 21st International Joint Conference on Artificial Intelligence (IJCAI-2009), pp. 1870–1875 (2009)
Čáp, M., Novák, P., Kleiner, A., Selecký, M.: Prioritized planning algorithms for trajectory coordination of multiple mobile robots. IEEE Trans. Autom. Sci. Eng. 12(3), 835–849 (2015)
Wang, K.-H.C., Botea, A.: MAPP: a scalable multi-agent path planning algorithm with tractability and completeness guarantees. J. Artif. Intell. Res. (JAIR) 42, 55–90 (2011)
Acknowledgements
This work was supported by the Russian Science Foundation (Project No. 16-11-00048).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Andreychuk, A., Yakovlev, K. (2017). Applying MAPP Algorithm for Cooperative Path Finding in Urban Environments. In: Ronzhin, A., Rigoll, G., Meshcheryakov, R. (eds) Interactive Collaborative Robotics. ICR 2017. Lecture Notes in Computer Science(), vol 10459. Springer, Cham. https://doi.org/10.1007/978-3-319-66471-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-319-66471-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-66470-5
Online ISBN: 978-3-319-66471-2
eBook Packages: Computer ScienceComputer Science (R0)