Abstract
Ionic Liquids (ILs) are salts known for their low melting point, wide liquid phase, and their low toxicity. Also, ILs have an extensive range of applications. Choosing the “best” IL for an application requires the prior knowledge of the physicochemical properties of all the existing ILs which is currently inadequate, furthermore, the synthesis of ILs is generally expensive and time-consuming; thus, a large-scale study is infeasible. Therefore, an estimation system of the melting points could solve partially this problem, the estimation is complex since the ILs exhibit unconventional behavior and the information available may be inaccurate. This paper presents a neuro-evolution neural network for the estimation of the melting point of ILs.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
A.R. Katritzky, A. Lomaka, R. Petrukhin, R. Jain, M. Karelson, A.E. Visser, R.D. Rogers, QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids. J. Chem. Inf. Comput. Sci. 42(1), 71–74 (2002)
P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, vol. 1, no. 10 (Wiley, 2008)
M. Alvarez-Guerra, P. Luis, A. Irabien, Modelo de contribución de grupos para la estimación de la ecotoxicidad de líquidos iónicos. Afinidad 68(551), 20–24 (2011)
J.O. Valderrama, R.A. Campusano, Melting properties of molten salts and ionic liquids. Chemical homology, correlation, and prediction. C. R. Chim. 19(5), 654–664 (2016)
G. Carrera, J. Aires-de-Sousa, Estimation of melting points of pyridinium bromide ionic liquids with decision trees and neural networks. Green Chem. 7(1), 20 (2004)
R. Bini, C. Chiappe, C. Duce, A. Micheli, A. Starita, R. Solaro, M.R. Tine, Ionic liquids: prediction of their melting points by a recursive neural network model. Green Chem. 10, 306–309 (2008)
S. Trohalaki, R. Pachter, Prediction of melting points for ionic liquids. QSAR Comb. Sci. 24(4), 485–490 (2005)
N. Sun, X. He, K. Dong, X. Zhang, X. Lu, H. He, S. Zhang, Prediction of the melting points for two kinds of room temperature ionic liquids. Fluid Phase Equilib. 246(1–2), 137–142 (2006)
A. Varnek, N. Kireeva, I.V Tetko, I.I. Baskin, V.P. Solov’ev, Exhaustive QSPR studies of a large diverse set of ionic liquids: how accurately can we predict melting points? J. Chem. Inf. Mod. 47(3), pp. 1111–1122 (2007)
G. Deyfus, Neural Networks (2004)
B. Kosko, Neuronal Networks and Fuzzy Systems (1992)
C. Fyfe, Artificial neural networks and information theory. 1–204 (2000)
S. Zhang, X. Lu, Q. Zhou, X. Li, X. Zhang, S. Li, Ionic Liquids Physicochemical Properties (2009)
ChemAxon, MarvinSketch (JChem Base) version 16.8.8, http://www.chemaxon.com/products/marvin/marvinsketch/ (2016)
C.W. Yap, PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32(7), 1466–1474 (2011)
M. Riedmiller, Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Computer Standards and Interfaces 16(3), 265–278 (1994)
K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)
J. Heaton, Encog: library of interchangeable machine learning models for java and C#. J. Mach. Learn. Res. 16, 1243–1247 (2015)
J.O. Valderrama, R.E. Rojas, Redes Neuronales Artificiales como Herramienta para detectardatos Erróneos de Temperatura de Fusión de Líquidos Iónicos, in XXVI Congreso Interamericano de Ing. Química (2012)
Acknowledgements
The authors would like to acknowledge with appreciation and gratitude to CONACYT, TECNM and PRODEP. Also, acknowledge to Laboratorio Nacional de Tecnologías de la Información in the Instituto Tecnológico de Ciudad Madero for the access to the cluster. This work has been partial supported by CONACYT Project 254498. Jorge A. Cerecedo-Cordoba and J. David Terán-Villanueva would like to thank the supports 434694 and 177007.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Cerecedo-Cordoba, J.A., González Barbosa, J.J., Terán-Villanueva, J.D., Frausto-Solís, J. (2018). Neuro-evolutionary Neural Network for the Estimation of Melting Point of Ionic Liquids. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-71008-2_7
Download citation
DOI: https://doi.org/10.1007/978-3-319-71008-2_7
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-71007-5
Online ISBN: 978-3-319-71008-2
eBook Packages: EngineeringEngineering (R0)