Skip to main content

Abstract

Ionic Liquids (ILs) are salts known for their low melting point, wide liquid phase, and their low toxicity. Also, ILs have an extensive range of applications. Choosing the “best” IL for an application requires the prior knowledge of the physicochemical properties of all the existing ILs which is currently inadequate, furthermore, the synthesis of ILs is generally expensive and time-consuming; thus, a large-scale study is infeasible. Therefore, an estimation system of the melting points could solve partially this problem, the estimation is complex since the ILs exhibit unconventional behavior and the information available may be inaccurate. This paper presents a neuro-evolution neural network for the estimation of the melting point of ILs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. A.R. Katritzky, A. Lomaka, R. Petrukhin, R. Jain, M. Karelson, A.E. Visser, R.D. Rogers, QSPR correlation of the melting point for pyridinium bromides, potential ionic liquids. J. Chem. Inf. Comput. Sci. 42(1), 71–74 (2002)

    Article  Google Scholar 

  2. P. Wasserscheid, T. Welton, Ionic Liquids in Synthesis, vol. 1, no. 10 (Wiley, 2008)

    Google Scholar 

  3. M. Alvarez-Guerra, P. Luis, A. Irabien, Modelo de contribución de grupos para la estimación de la ecotoxicidad de líquidos iónicos. Afinidad 68(551), 20–24 (2011)

    Google Scholar 

  4. J.O. Valderrama, R.A. Campusano, Melting properties of molten salts and ionic liquids. Chemical homology, correlation, and prediction. C. R. Chim. 19(5), 654–664 (2016)

    Article  Google Scholar 

  5. G. Carrera, J. Aires-de-Sousa, Estimation of melting points of pyridinium bromide ionic liquids with decision trees and neural networks. Green Chem. 7(1), 20 (2004)

    Article  Google Scholar 

  6. R. Bini, C. Chiappe, C. Duce, A. Micheli, A. Starita, R. Solaro, M.R. Tine, Ionic liquids: prediction of their melting points by a recursive neural network model. Green Chem. 10, 306–309 (2008)

    Article  Google Scholar 

  7. S. Trohalaki, R. Pachter, Prediction of melting points for ionic liquids. QSAR Comb. Sci. 24(4), 485–490 (2005)

    Article  Google Scholar 

  8. N. Sun, X. He, K. Dong, X. Zhang, X. Lu, H. He, S. Zhang, Prediction of the melting points for two kinds of room temperature ionic liquids. Fluid Phase Equilib. 246(1–2), 137–142 (2006)

    Article  Google Scholar 

  9. A. Varnek, N. Kireeva, I.V Tetko, I.I. Baskin, V.P. Solov’ev, Exhaustive QSPR studies of a large diverse set of ionic liquids:  how accurately can we predict melting points? J. Chem. Inf. Mod. 47(3), pp. 1111–1122 (2007)

    Google Scholar 

  10. G. Deyfus, Neural Networks (2004)

    Google Scholar 

  11. B. Kosko, Neuronal Networks and Fuzzy Systems (1992)

    Google Scholar 

  12. C. Fyfe, Artificial neural networks and information theory. 1–204 (2000)

    Google Scholar 

  13. S. Zhang, X. Lu, Q. Zhou, X. Li, X. Zhang, S. Li, Ionic Liquids Physicochemical Properties (2009)

    Google Scholar 

  14. ChemAxon, MarvinSketch (JChem Base) version 16.8.8, http://www.chemaxon.com/products/marvin/marvinsketch/ (2016)

  15. C.W. Yap, PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints. J. Comput. Chem. 32(7), 1466–1474 (2011)

    Article  MathSciNet  Google Scholar 

  16. M. Riedmiller, Advanced supervised learning in multi-layer perceptrons—from backpropagation to adaptive learning algorithms. Computer Standards and Interfaces 16(3), 265–278 (1994)

    Article  Google Scholar 

  17. K.O. Stanley, R. Miikkulainen, Evolving neural networks through augmenting topologies. Evol. Comput. 10(2), 99–127 (2002)

    Article  Google Scholar 

  18. J. Heaton, Encog: library of interchangeable machine learning models for java and C#. J. Mach. Learn. Res. 16, 1243–1247 (2015)

    MathSciNet  MATH  Google Scholar 

  19. J.O. Valderrama, R.E. Rojas, Redes Neuronales Artificiales como Herramienta para detectardatos Erróneos de Temperatura de Fusión de Líquidos Iónicos, in XXVI Congreso Interamericano de Ing. Química (2012)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge with appreciation and gratitude to CONACYT, TECNM and PRODEP. Also, acknowledge to Laboratorio Nacional de Tecnologías de la Información in the Instituto Tecnológico de Ciudad Madero for the access to the cluster. This work has been partial supported by CONACYT Project 254498. Jorge A. Cerecedo-Cordoba and J. David Terán-Villanueva would like to thank the supports 434694 and 177007.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Cerecedo-Cordoba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cerecedo-Cordoba, J.A., González Barbosa, J.J., Terán-Villanueva, J.D., Frausto-Solís, J. (2018). Neuro-evolutionary Neural Network for the Estimation of Melting Point of Ionic Liquids. In: Castillo, O., Melin, P., Kacprzyk, J. (eds) Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications. Studies in Computational Intelligence, vol 749. Springer, Cham. https://doi.org/10.1007/978-3-319-71008-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-71008-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-71007-5

  • Online ISBN: 978-3-319-71008-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy