Abstract
In this paper, we give the overview of the open domain Question Answering (or open domain QA) shared task in the NLPCC 2017. We first review the background of QA, and then describe two open domain Chinese QA tasks in this year’s NLPCC, including the construction of the benchmark datasets and the evaluation metrics. The evaluation results of submissions from participating teams are presented in the experimental part.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wang, Y., Berant, J., Liang, P.: Building a semantic parser overnight. In: ACL (2015)
Pasupat, P., Liang, P.: Compositional semantic parsing on semi-structured tables. In: ACL (2015)
Pasupat, P., Liang, P.: Zero-shot entity extraction from web pages. In: ACL (2014)
Bao, J., Duan, N., Zhou, M., Zhao, T.: Knowledge-based question answering as machine translation. In: ACL (2014)
Yang, M.-C., Duan, N., Zhou, M., Rim, H.-C.: Joint relational embeddings for knowledge-based question answering. In: EMNLP (2014)
Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: EMNLP (2013)
Kwiatkowski, T., Choi, E., Artzi, Y., Zettlemoyer, L.: Scaling semantic parsers with on-the-fly ontology matching. In: EMNLP (2013)
Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with memory network. In: ICLR (2015)
Weston, J., Bordes, A., Chopra, S., Mikolov, T.: Towards AI-complete Question Answering: A Set of Prerequisite Toy Tasks. arXiv (2015)
Dong, L., Wei, F., Zhou, M., Xu, K.: Question answering over freebase with multi-column convolutional neural networks. In: ACL (2015)
Yih, W., Chang, M.-W., He, X., Gao, J.: Semantic parsing via staged query graph generation: question answering with knowledge base. In: ACL (2015)
Yao, X.: Lean question answering over freebase from scratch. In: NAACL (2015)
Berant, J., Liang, P.: Semantic parsing via paraphrasing. In: ACL (2014)
Yao, X., Van Durme, B.: Information extraction over structured data: question answering with freebase. In: ACL (2014)
Bordes, A., Weston, J., Chopra, S.: Question answering with subgraph embeddings. In: EMNLP (2014)
Bordes, A., Weston, J., Usunier, N.: Open question answering with weakly supervised embedding models. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 165–180. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_11
Yang, Y., Yih, W., Meek, C.: WIKIQA: a challenge dataset for open-domain question answering. In: EMNLP (2015)
Miao, Y., Yu, L., Blunsom, P.: Neural variational inference for text processing. arXiv (2015)
Wang, D., Nyberg, E.: A long short term memory model for answer sentence selection in question answering. In: ACL (2015)
Yin, W., Schütze, H., Xiang, B., Zhou, B.: ABCNN: attention-based convolutional neural network for modeling sentence pairs. In: ACL (2016)
Yu, L., Hermann, K.M., Blunsom, P., Pullman, S.: Deep learning for answer sentence selection. In: NIPS Workshop (2014)
Yan, Z., Duan, N., Bao, J., Chen, P., Zhou, M., Li, Z., Zhou, J.: DocChat: an information retrieval approach for chatbot engines using unstructured documents. In: ACL (2016)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this paper
Cite this paper
Duan, N., Tang, D. (2018). Overview of the NLPCC 2017 Shared Task: Open Domain Chinese Question Answering. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2017. Lecture Notes in Computer Science(), vol 10619. Springer, Cham. https://doi.org/10.1007/978-3-319-73618-1_86
Download citation
DOI: https://doi.org/10.1007/978-3-319-73618-1_86
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-73617-4
Online ISBN: 978-3-319-73618-1
eBook Packages: Computer ScienceComputer Science (R0)