Skip to main content

Overview of the NLPCC 2017 Shared Task: Open Domain Chinese Question Answering

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10619))

Abstract

In this paper, we give the overview of the open domain Question Answering (or open domain QA) shared task in the NLPCC 2017. We first review the background of QA, and then describe two open domain Chinese QA tasks in this year’s NLPCC, including the construction of the benchmark datasets and the evaluation metrics. The evaluation results of submissions from participating teams are presented in the experimental part.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Wang, Y., Berant, J., Liang, P.: Building a semantic parser overnight. In: ACL (2015)

    Google Scholar 

  2. Pasupat, P., Liang, P.: Compositional semantic parsing on semi-structured tables. In: ACL (2015)

    Google Scholar 

  3. Pasupat, P., Liang, P.: Zero-shot entity extraction from web pages. In: ACL (2014)

    Google Scholar 

  4. Bao, J., Duan, N., Zhou, M., Zhao, T.: Knowledge-based question answering as machine translation. In: ACL (2014)

    Google Scholar 

  5. Yang, M.-C., Duan, N., Zhou, M., Rim, H.-C.: Joint relational embeddings for knowledge-based question answering. In: EMNLP (2014)

    Google Scholar 

  6. Berant, J., Chou, A., Frostig, R., Liang, P.: Semantic parsing on freebase from question-answer pairs. In: EMNLP (2013)

    Google Scholar 

  7. Kwiatkowski, T., Choi, E., Artzi, Y., Zettlemoyer, L.: Scaling semantic parsers with on-the-fly ontology matching. In: EMNLP (2013)

    Google Scholar 

  8. Bordes, A., Usunier, N., Chopra, S., Weston, J.: Large-scale simple question answering with memory network. In: ICLR (2015)

    Google Scholar 

  9. Weston, J., Bordes, A., Chopra, S., Mikolov, T.: Towards AI-complete Question Answering: A Set of Prerequisite Toy Tasks. arXiv (2015)

    Google Scholar 

  10. Dong, L., Wei, F., Zhou, M., Xu, K.: Question answering over freebase with multi-column convolutional neural networks. In: ACL (2015)

    Google Scholar 

  11. Yih, W., Chang, M.-W., He, X., Gao, J.: Semantic parsing via staged query graph generation: question answering with knowledge base. In: ACL (2015)

    Google Scholar 

  12. Yao, X.: Lean question answering over freebase from scratch. In: NAACL (2015)

    Google Scholar 

  13. Berant, J., Liang, P.: Semantic parsing via paraphrasing. In: ACL (2014)

    Google Scholar 

  14. Yao, X., Van Durme, B.: Information extraction over structured data: question answering with freebase. In: ACL (2014)

    Google Scholar 

  15. Bordes, A., Weston, J., Chopra, S.: Question answering with subgraph embeddings. In: EMNLP (2014)

    Google Scholar 

  16. Bordes, A., Weston, J., Usunier, N.: Open question answering with weakly supervised embedding models. In: Calders, T., Esposito, F., Hüllermeier, E., Meo, R. (eds.) ECML PKDD 2014. LNCS (LNAI), vol. 8724, pp. 165–180. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44848-9_11

    Google Scholar 

  17. Yang, Y., Yih, W., Meek, C.: WIKIQA: a challenge dataset for open-domain question answering. In: EMNLP (2015)

    Google Scholar 

  18. Miao, Y., Yu, L., Blunsom, P.: Neural variational inference for text processing. arXiv (2015)

    Google Scholar 

  19. Wang, D., Nyberg, E.: A long short term memory model for answer sentence selection in question answering. In: ACL (2015)

    Google Scholar 

  20. Yin, W., Schütze, H., Xiang, B., Zhou, B.: ABCNN: attention-based convolutional neural network for modeling sentence pairs. In: ACL (2016)

    Google Scholar 

  21. Yu, L., Hermann, K.M., Blunsom, P., Pullman, S.: Deep learning for answer sentence selection. In: NIPS Workshop (2014)

    Google Scholar 

  22. Yan, Z., Duan, N., Bao, J., Chen, P., Zhou, M., Li, Z., Zhou, J.: DocChat: an information retrieval approach for chatbot engines using unstructured documents. In: ACL (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Duan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Duan, N., Tang, D. (2018). Overview of the NLPCC 2017 Shared Task: Open Domain Chinese Question Answering. In: Huang, X., Jiang, J., Zhao, D., Feng, Y., Hong, Y. (eds) Natural Language Processing and Chinese Computing. NLPCC 2017. Lecture Notes in Computer Science(), vol 10619. Springer, Cham. https://doi.org/10.1007/978-3-319-73618-1_86

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-73618-1_86

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-73617-4

  • Online ISBN: 978-3-319-73618-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy