Skip to main content

Predicting Global Irradiance Combining Forecasting Models Through Machine Learning

  • Conference paper
  • First Online:
Hybrid Artificial Intelligent Systems (HAIS 2018)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10870))

Included in the following conference series:

  • 2598 Accesses

Abstract

Predicting solar irradiance is an active research problem, with many physical models having being designed to accurately predict Global Horizontal Irradiance. However, some of the models are better at short time horizons, while others are more accurate for medium and long horizons. The aim of this research is to automatically combine the predictions of four different models (Smart Persistence, Satellite, Cloud Index Advection and Diffusion, and Solar Weather Research and Forecasting) by means of a state-of-the-art machine learning method (Extreme Gradient Boosting). With this purpose, the four models are used as inputs to the machine learning model, so that the output is an improved Global Irradiance forecast. A 2-year dataset of predictions and measures at one radiometric station in Seville has been gathered to validate the method proposed. Three approaches are studied: a general model, a model for each horizon, and models for groups of horizons. Experimental results show that the machine learning combination of predictors is, on average, more accurate than the predictors themselves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Inman, R.H., Pedro, H.T.C., Coimbra, C.F.M.: Solar forecasting methods for renewable energy integration. Prog. Energy Combust. Sci. 39(6), 535–576 (2013)

    Article  Google Scholar 

  2. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann (2016)

    Google Scholar 

  3. Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli, C., Motte, F., Fouilloy, A.: Machine learning methods for solar radiation forecasting: a review. Renew. Energy 105, 569–582 (2017)

    Article  Google Scholar 

  4. Terren-Serrano, G.: Machine learning approach to forecast global solar radiation time series (2016)

    Google Scholar 

  5. Chu, Y., Pedro, H.T.C., Coimbra, C.F.M.: Hybrid intra-hour DNI forecasts with sky image processing enhanced by stochastic learning. Sol. Energy 98, 592–603 (2013)

    Article  Google Scholar 

  6. Mathiesen, P., Collier, C., Kleissl, J.: A high-resolution, cloud-assimilating numerical weather prediction model for solar irradiance forecasting. Sol. Energy 92, 47–61 (2013)

    Article  Google Scholar 

  7. Salcedo-Sanz, S., Casanova-Mateo, C., Pastor-Sánchez, A., Sánchez-Girón, M.: Daily global solar radiation prediction based on a hybrid coral reefs optimization-extreme learning machine approach. Sol. Energy 105, 91–98 (2014)

    Article  Google Scholar 

  8. Alonso, J., Batlles, F.J.: Short and medium-term cloudiness forecasting using remote sensing techniques and sky camera imagery. Energy 73, 890–897 (2014)

    Article  Google Scholar 

  9. Lorenz, E., Kühnert, J., Heinemann, D.: Short term forecasting of solar irradiance by combining satellite data and numerical weather predictions. In: Proceedings of 27th European Photovoltaic Solar Energy Conference, Valencia, Spain, pp. 4401–440 (2012)

    Google Scholar 

  10. Huang, J., Korolkiewicz, M., Agrawal, M., Boland, J.: Forecasting solar radiation on an hourly time scale using a coupled autoregressive and dynamical system (cards) model. Sol. Energy 87, 136–149 (2013)

    Article  Google Scholar 

  11. Lu, S., Hwang, Y., Khabibrakhmanov, I., Marianno, F.J., Shao, X., Zhang, J., Hodge, B.M., Hamann, H.F.: Machine learning based multi-physical-model blending for enhancing renewable energy forecast - improvement via situation dependent error correction. In: European Control Conference (ECC), pp. 283–290 (2015)

    Google Scholar 

  12. Mazorra Aguiar, L., Pereira, B., Lauret, P., Díaz, F., David, M.: Combining solar irradiance measurements, satellite-derived data and a numerical weather prediction model to improve intra-day solar forecasting. Renew. Energy 97, 599–610 (2016)

    Article  Google Scholar 

  13. Sánchez, I.: Adaptive combination of forecasts with application to wind energy. Int. J. Forecast. 24(4), 679–693 (2008)

    Article  Google Scholar 

  14. Rigollier, C., Bauer, O., Wald, L.: On the clear sky model of the ESRA-European Solar Radiation Atlas-with respect to the heliosat method. Sol. Energy 68(1), 33–48 (2000)

    Article  Google Scholar 

  15. Nonnenmacher, L., Coimbra, C.F.M.: Streamline-based method for intra-day solar forecasting through remote sensing. Sol. Energy 108, 447–459 (2014)

    Article  Google Scholar 

  16. Arbizu-Barrena, C., Ruiz-Arias, J.A., Rodríguez-Benítez, F.J., Pozo-Vézquez, D., Tovar-Pescador, J.: Short-term solar radiation forecasting by advecting and diffusing MSG cloud index. Sol. Energy 155, 1092–1103 (2017)

    Article  Google Scholar 

  17. Jimenez, P.A., Hacker, J.P., Dudhia, J., Haupt, S.E., Ruiz-Arias, J.A., Gueymard, C.A., Thompson, G., Eidhammer, T., Deng, A.: WRF-solar: description and clear-sky assessment of an augmented NWP model for solar power prediction. Bull. Am. Meteorol. Soc. 97(7), 1249–1264 (2015)

    Article  Google Scholar 

  18. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2016, pp. 785–794. ACM (2016)

    Google Scholar 

  19. Urraca, R., Antonanzas, J., Antonanzas-Torres, F., Martinez-de-Pison, F.J.: Estimation of daily global horizontal irradiation using extreme gradient boosting machines. In: Graña, M., López-Guede, J.M., Etxaniz, O., Herrero, Á., Quintián, H., Corchado, E. (eds.) ICEUTE/SOCO/CISIS-2016. AISC, vol. 527, pp. 105–113. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47364-2_11

    Chapter  Google Scholar 

  20. Fan, J., Wang, X., Lifeng, W., Zhou, H., Zhang, F., Xiang, Y., Xianghui, L., Xiang, Y.: Comparison of support vector machine and extreme gradient boosting for predicting daily global solar radiation using temperature and precipitation in humid subtropical climates: a case study in China. Energy Conv. Manag. 164, 102–111 (2018)

    Article  Google Scholar 

  21. Rigollier, C., Lefèvre, M., Wald, L.: The method heliosat-2 for deriving shortwave solar radiation from satellite images. Sol. Energy 77(2), 159–169 (2004)

    Article  Google Scholar 

  22. Skamarock William, C., Joseph, B.K., Jimy, D., David, O.G., Dale, M.B., Michael, G.D., Huang, X.Y., Wang, W., Jordan, G.P.: A description of the advanced research WRF version 3. NCAR technical note, 126 (2008)

    Google Scholar 

  23. Long, C.N., Dutton, E.G.: BSRN global network recommended QC tests, v2. x. (2010)

    Google Scholar 

Download references

Acknowledgments

The authors are supported by the Spanish Ministry of Economy and Competitiveness, projects ENE2014-56126-C2-1-R and ENE2014-56126-C2-2-R and FEDER funds. Some of the authors are also funded by the Junta de Andalucía (research group TEP-220).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Huertas-Tato .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huertas-Tato, J., Aler, R., Rodríguez-Benítez, F.J., Arbizu-Barrena, C., Pozo-Vázquez, D., Galván, I.M. (2018). Predicting Global Irradiance Combining Forecasting Models Through Machine Learning. In: de Cos Juez, F., et al. Hybrid Artificial Intelligent Systems. HAIS 2018. Lecture Notes in Computer Science(), vol 10870. Springer, Cham. https://doi.org/10.1007/978-3-319-92639-1_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-92639-1_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-92638-4

  • Online ISBN: 978-3-319-92639-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy