Abstract
Lung cancer is the most common type of cancer and has the highest mortality rate in the world. The automatic process for the diagnosis by computer vision systems, through medical images, provides an interpretation regarding the pathology. The idea of this work is to use the texture features using phylogenetic diversity indexes, to classify Non-Small Cell Lung Cancer. This work presents the development of texture descriptors based on phylogenetic diversity indices for characterization of the nodule. The tests showed promising results of 98.47% accuracy, a Kappa index of 0.979 and an ROC of 0.999.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Setio, A.A.A., Ciompi, F., Litjens, G., Gerke, P., Jacobs, C., van Riel, S.J., Wille, M.M.W., Naqibullah, M., Sánchez, C.I., van Ginneken, B.: Pulmonary nodule detection in CT images: false positive reduction using multi-view convolutional networks. IEEE Trans. Med. Imaging 35(5), 1160–1169 (2016)
Gillies, R.J., Kinahan, P.E., Hricak, H.: Radiomics: images are more than pictures, they are data. Radiology 278(2), 563–577 (2015)
Kumar, D., Chung, A.G., Shaifee, M.J., Khalvati, F., Haider, M.A., Wong, A.: Discovery radiomics for pathologically-proven computed tomography lung cancer prediction. In: Karray, F., Campilho, A., Cheriet, F. (eds.) ICIAR 2017. LNCS, vol. 10317, pp. 54–62. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59876-5_7
van Timmeren, J.E., Leijenaar, R.T., van Elmpt, W., Reymen, B., Oberije, C., Monshouwer, R., Bussink, J., Brink, C., Hansen, O., Lambin, P.: Survival prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images. Radiother. Oncol. 123(3), 363–369 (2017)
Coroller, T.P., Agrawal, V., Narayan, V., Hou, Y., Grossmann, P., Lee, S.W., Mak, R.H., Aerts, H.J.: Radiomic phenotype features predict pathological response in non-small cell lung cancer. Radiother. Oncol. 119(3), 480–486 (2016)
Huynh, E., Coroller, T.P., Narayan, V., Agrawal, V., Hou, Y., Romano, J., Franco, I., Mak, R.H., Aerts, H.J.: CT-based radiomic analysis of stereotactic body radiation therapy patients with lung cancer. Radiother. Oncol. 120(2), 258–266 (2016)
de Carvalho Filho, A.O., Silva, A.C., de Paiva, A.C., Nunes, R.A., Gattass, M.: Computer-aided diagnosis of lung nodules in computed tomography by using phylogenetic diversity, genetic algorithm, and SVM. J. Digit. Imaging 30(6), 812–822 (2017)
Dean, J.: Big Data, Data Mining, and Machine Learning: Value Creation for Business Leaders and Practitioners. John Wiley & Sons, Hoboken (2014)
Aerts, H., Rios Velazquez, E., Leijenaar, R.T., Parmar, C., Grossmann, P., Carvalho, S., Lambin, P.: Data from NSCLC-radiomics. The cancer imaging archive (2015)
Izsák, J., Papp, L.: A link between ecological diversity indices and measures of biodiversity. Ecol. Model. 130(1–3), 151–156 (2000)
Clarke, K., Warwick, R.: Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd edn. (1994)
Pienkowski, M., Watkinson, A., Kerby, G., Clarke, K., Warwick, R.: A taxonomic distinctness index and its statistical properties. J. Appl. Ecol. 35(4), 523–531 (1998)
Schweiger, O., Klotz, S., Durka, W., Kühn, I.: A comparative test of phylogenetic diversity indices. Oecologia 157(3), 485–495 (2008)
Faith, D.P.: Phylogenetic pattern and the quantification of organismal biodiversity. Phil. Trans. R. Soc. Lond. B 345(1311), 45–58 (1994)
Hanley, J.A., McNeil, B.J.: The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143(1), 29–36 (1982)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Neto, A.C.d.S. et al. (2018). Diagnosis of Non-Small Cell Lung Cancer Using Phylogenetic Diversity in Radiomics Context. In: Campilho, A., Karray, F., ter Haar Romeny, B. (eds) Image Analysis and Recognition. ICIAR 2018. Lecture Notes in Computer Science(), vol 10882. Springer, Cham. https://doi.org/10.1007/978-3-319-93000-8_68
Download citation
DOI: https://doi.org/10.1007/978-3-319-93000-8_68
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-92999-6
Online ISBN: 978-3-319-93000-8
eBook Packages: Computer ScienceComputer Science (R0)