Skip to main content

Automatic Segmentation of Neurons from Fluorescent Microscopy Imaging

  • Conference paper
  • First Online:
Biomedical Engineering Systems and Technologies (BIOSTEC 2017)

Abstract

Automatic detection and segmentation of neurons from microscopy acquisition is essential for statistically characterizing neuron morphology that can be related to their functional role. In this paper, we propose a combined pipeline that starts from the automatic detection of the soma through a new multiscale blob enhancement filtering. Then, a precise segmentation of the detected cell body is obtained by an active contour approach. The resulted segmentation is used as initial seed for the second part of the approach that proposes a dendrite arborization tracing method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Baden, T., Berens, P., Franke, K., Rosón, M.R., Bethge, M., Euler, T.: The functional diversity of retinal ganglion cells in the mouse. Nature 529(7586), 345–350 (2016)

    Article  Google Scholar 

  2. Meijering, E.: Neuron tracing in perspective. Cytom. Part A 77(7), 693–704 (2010)

    Article  MathSciNet  Google Scholar 

  3. Basu, S., Aksel, A., Condron, B., Acton, S.T.: Tree2Tree: neuron segmentation for generation of neuronal morphology. In: 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 548–551. IEEE (2010)

    Google Scholar 

  4. Longair, M.H., Baker, D.A., Armstrong, J.D.: Simple neurite tracer: open source software for reconstruction, visualization and analysis of neuronal processes. Bioinformatics 27(17), 2453–2454 (2011)

    Article  Google Scholar 

  5. Zheng, Z., Hong, P.: Incorporate deep-transfer-learning into automatic 3D neuron tracing. In: The First International Conference on Neuroscience and Cognitive Brain Information, BRAININFO 2016 (2016)

    Google Scholar 

  6. Chan, T.F., Vese, L., et al.: Active contours without edges. IEEE Trans. Image Process. 10, 266–277 (2001)

    Article  Google Scholar 

  7. Yezzi, A., Tsai, A., Willsky, A.: A fully global approach to image segmentation via coupled curve evolution equations. J. Vis. Commun. Image Represent. 13(1), 195–216 (2002)

    Article  Google Scholar 

  8. Ge, Q., Li, C., Shao, W., Li, H.: A hybrid active contour model with structured feature for image segmentation. Signal Process. 108, 147–158 (2015)

    Article  Google Scholar 

  9. Wu, P., Yi, J., Zhao, G., Huang, Z., Qiu, B., Gao, D.: Active contour-based cell segmentation during freezing and its application in cryopreservation. IEEE Trans. Biomed. Eng. 62(1), 284–295 (2015)

    Article  Google Scholar 

  10. Lee, T.C., Kashyap, R.L., Chu, C.N.: Building skeleton models via 3-D medial surface axis thinning algorithms. CVGIP: Graph. Models Image Process. 56(6), 462–478 (1994)

    Google Scholar 

  11. Palágyi, K., Kuba, A.: A 3D 6-subiteration thinning algorithm for extracting medial lines. Pattern Recognit. Lett. 19(7), 613–627 (1998)

    Article  Google Scholar 

  12. Meijering, E.H., Jacob, M., Sarria, J.C.F., Unser, M.: A novel approach to neurite tracing in fluorescence microscopy images. In: SIP, pp. 491–495 (2003)

    Google Scholar 

  13. Benmansour, F., Cohen, L.D.: Tubular structure segmentation based on minimal path method and anisotropic enhancement. Int. J. Comput. Vis. 92(2), 192–210 (2011)

    Article  Google Scholar 

  14. Türetken, E., González, G., Blum, C., Fua, P.: Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics 9(2–3), 279–302 (2011)

    Article  Google Scholar 

  15. Baglietto, S., Kepiro, I.E., Hilgen, G., Sernagor, E., Murino, V., Sona, D.: Segmentation of retinal ganglion cells from fluorescent microscopy imaging. In: BIOSTEC, pp. 17–23 (2017)

    Google Scholar 

  16. Gulyanon, S., Sharifai, N., Kim, M.D., Chiba, A., Tsechpenakis, G.: CRF formulation of active contour population for efficient three-dimensional neurite tracing. In: 2016 IEEE 13th International Symposium on Biomedical Imaging, ISBI, pp. 593–597. IEEE (2016)

    Google Scholar 

  17. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  18. Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M.A.: Multiscale vessel enhancement filtering. In: Wells, W.M., Colchester, A., Delp, S. (eds.) MICCAI 1998. LNCS, vol. 1496, pp. 130–137. Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0056195

    Chapter  Google Scholar 

  19. Liu, J., White, J.M., Summers, R.M.: Automated detection of blob structures by Hessian analysis and object scale. In: 2010 17th IEEE International Conference on Image Processing, ICIP, pp. 841–844. IEEE (2010)

    Google Scholar 

  20. Beucher, S., Lantuéjoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing, Real-Time Edge and Motion Detection (1979)

    Google Scholar 

  21. Lathen, G., Jonasson, J., Borga, M.: Phase based level set segmentation of blood vessels. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

  22. Läthén, G., Jonasson, J., Borga, M.: Blood vessel segmentation using multi-scale quadrature filtering. Pattern Recognit. Lett. 31(8), 762–767 (2010)

    Article  Google Scholar 

  23. Zijdenbos, A.P., Dawant, B.M., Margolin, R., Palmer, A.C., et al.: Morphometric analysis of white matter lesions in MR images: method and validation. IEEE Trans. Med. Imag. 13(4), 716–724 (1994)

    Article  Google Scholar 

  24. Mukherjee, S., Condron, B., Acton, S.T.: Tubularity flow field—A technique for automatic neuron segmentation. IEEE Trans. Image Process. 24(1), 374–389 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research received financial support from the \(7^{th}\) Framework Programme for Research of the European Commision, Grant agreement no. 600847: RENVISION project of the Future and Emerging Technologies (FET) programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvia Baglietto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Baglietto, S., Kepiro, I.E., Hilgen, G., Sernagor, E., Murino, V., Sona, D. (2018). Automatic Segmentation of Neurons from Fluorescent Microscopy Imaging. In: Peixoto, N., Silveira, M., Ali, H., Maciel, C., van den Broek, E. (eds) Biomedical Engineering Systems and Technologies. BIOSTEC 2017. Communications in Computer and Information Science, vol 881. Springer, Cham. https://doi.org/10.1007/978-3-319-94806-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-94806-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-94805-8

  • Online ISBN: 978-3-319-94806-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy