Abstract
For many-objective optimization problems (MaOPs), the problem of balancing the convergence and the diversity during the search process is often encountered but very challenging due to its vast range of searching objective space. To solve the above problem, we propose a novel many-objective evolutionary algorithm based on the hybrid angle-encouragement decomposition (MOEA/AD-EBI). The proposed MOEA/AD-EBI combines two types of decomposition approaches, i.e., the angle-based decomposition and the encouragement-based boundary intersection decomposition. By coordinating the above two decomposition approaches, MOEA/AD-EBI is expected to effectively achieve a good balance between the convergence and the diversity when solving various kinds of MaOPs. Extensive experiments on some well-known benchmark problems validate the superiority of MOEA/AD-EBI over some state-of-the-art many-objective evolutionary algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hughes, E.: Evolutionary many-objective optimization: many once or one many? In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, Edinburgh, UK, pp. 222–227 (2005)
Huband, S., Barone, L., While, L., Hingston, P.: A scalable multi-objective test problem toolkit. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 280–295. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_20
Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multi-objective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. AI&KP, pp. 105–145. Springer, London (2005). https://doi.org/10.1007/1-84628-137-7_6
Deb, K., Agrawal, R.B.: Simulated binary crossover for continuous search space. Complex Syst. 9, 115–148 (1995)
Li, B., Tang, K., Li, J., Yao, X.: Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Trans. Evol. Comput. 20(6), 924–938 (2016)
Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point based non-dominated sorting approach, part I: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577–601 (2014)
Li, K., Deb, K., Zhang, Q.F., Kwong, S.: An evolutionary many-objective optimization algorithm based on dominance and decomposition. IEEE Trans. Evol. Comput. 19(5), 694–716 (2015)
Wang, H., Jiao, L., Yao, X.: Two_Arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524–541 (2015)
Xiang, Y., Zhou, Y.R., Li, M.Q.: A vector angle-based evolutionary algorithm for unconstrained many-objective optimization. IEEE Trans. Evol. Comput. 21(1), 131–152 (2017)
He, Z., Yen, G.: Many-objective evolutionary algorithm: object space reduction and diversity improvement. IEEE Trans. Evol. Comput. 20(1), 145–160 (2016)
Tian, Y., Zhang, X., Jin, Y.: A knee point driven evolutionary algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(6), 761–776 (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG, part of Springer Nature
About this paper
Cite this paper
Su, Y., Wang, J., Ma, L., Wang, X., Lin, Q., Chen, J. (2018). A Novel Many-Objective Optimization Algorithm Based on the Hybrid Angle-Encouragement Decomposition. In: Huang, DS., Gromiha, M., Han, K., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2018. Lecture Notes in Computer Science(), vol 10956. Springer, Cham. https://doi.org/10.1007/978-3-319-95957-3_6
Download citation
DOI: https://doi.org/10.1007/978-3-319-95957-3_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-95956-6
Online ISBN: 978-3-319-95957-3
eBook Packages: Computer ScienceComputer Science (R0)