Skip to main content

Concept Focus: Semantic Meta-Data for Describing MOOC Content

  • Conference paper
  • First Online:
Lifelong Technology-Enhanced Learning (EC-TEL 2018)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 11082))

Included in the following conference series:

  • 4099 Accesses

Abstract

MOOCs promised to herald a new age of open education. However, efficient access to MOOC content is still hard, thus unnecessarily complicating many use cases like efficient re-use of material, or tailored access for life-long learning scenarios. One of the reasons for this lack of accessibility is the shortage of meaningful semantic meta-data describing MOOC content and the resulting learning experience. In this paper, we explore Concept Focus, a new type of meta-data for describing a perceptual facet of modern video-based MOOCs, capturing how focused a learning resource is topic-wise, which is often an indicator of clarity and understandability. We provide the theoretical foundations of Concept Focus and outline a methodical workflow of how to automatically compute it for MOOC lectures. Furthermore, we show that the learners’ consumption behavior is correlated with a MOOC lecture’s Concept Focus, thus underlining that this type of meta-data is indeed relevant for user-centric querying, personalizing or even designing the MOOC experience. For showing this, we performed an extensive study with real-life MOOCs and 12,849 learners over the duration of three months.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.hlt.utdallas.edu/~saidul/code.html.

  2. 2.

    https://www.textrazor.com/.

  3. 3.

    https://dumps.wikimedia.org/enwiki/20180201/.

  4. 4.

    https://www.coursera.org/learn/crash-course-in-causality/lecture/VtFdu/propensity-score-matching-in-r.

  5. 5.

    https://www.edx.org/.

  6. 6.

    https://www.youtube.com/watch?v=nhMcB-bwSF0.

  7. 7.

    https://www.youtube.com/watch?v=DgYmpmwBybQ.

References

  1. Abdelali, S., et al.: Education data mining: Mining MOOCS videos using metadata based approach. In: Information Science and Technology (CiSt), pp. 531–534. IEEE (2016)

    Google Scholar 

  2. Bojanowski, P., Grave, E., Joulin, A., Mikolov, T.: Enriching word vectors with subword information. Trans. Assoc. Comput. Linguist. 5, 135–146 (2017)

    Google Scholar 

  3. Bougouin, A., Boudin, F., Daille, B.: Topicrank: Graph-based topic ranking for keyphrase extraction. In: International Joint Conference on Natural Language Processing (IJCNLP), pp. 543–551 (2013)

    Google Scholar 

  4. Catarino, M.E., Baptista, A.A.: Relating folksonomies with dublin core. In: Dublin Core Conference, pp. 14–22 (2008)

    Google Scholar 

  5. Chen, L., Ortona, S., Orsi, G., Benedikt, M.: Aggregating semantic annotators. Proc. VLDB Endow. 6(13), 1486–1497 (2013)

    Article  Google Scholar 

  6. Learning Technology Standards Committee. IEEE Standard for learning object metadata. IEEE Standard, 1484(1), 2007-04 (2002)

    Google Scholar 

  7. Consortium, I.G.L.: Learning resource meta-data specification (2002). https://www.imsglobal.org/metadata/index.html. Accessed 26 Feb 2018

  8. Dorça, F.A., Carvalho, V.C., Mendes, M.M., Araújo, R.D., Ferreira, H.N., Cattelan, R.G.: An approach for automatic and dynamic analysis of learning objects repositories through ontologies and data mining techniques for supporting personalized recommendation of content in adaptive and intelligent educational systems. In: Advanced Learning Technologies (ICALT), pp. 514–516. IEEE (2017)

    Google Scholar 

  9. Duval, E., Vervaet, E., Verhoeven, B., Hendrikx, K., Cardinaels, K., Olivié, H., Forte, E., Haenni, F., Warkentyne, K., Forte, M.W., et al.: Managing digital educational resources with the ariadne metadata system. J. Internet Cat. 3(2–3), 145–171 (2000)

    Article  Google Scholar 

  10. El-Beltagy, S.R., Rafea, A.: KP-miner: A keyphrase extraction system for english and arabic documents. Inf. Syst. 34(1), 132–144 (2009)

    Article  Google Scholar 

  11. Guo, P.J., Kim, J., Rubin, R.: How video production affects student engagement: An empirical study of mooc videos. In: ACM Conference on Learning @ Scale Conference, L@S 2014. pp. 41–50. ACM, New York, NY, USA (2014)

    Google Scholar 

  12. Khalil, H., Ebner, M.: MOOCS completion rates and possible methods to improve retention-a literature review. In: EdMedia: World Conference on Educational Media and Technology, pp. 1305–1313. Association for the Advancement of Computing in Education (AACE) (2014)

    Google Scholar 

  13. Kim, J., Guo, P.J., Seaton, D.T., Mitros, P., Gajos, K.Z., Miller, R.C.: Understanding in-video dropouts and interaction peaks inonline lecture videos. In: Conference on Learning@ Scale Conference, pp. 31–40. ACM (2014)

    Google Scholar 

  14. Kizilcec, R.F., Papadopoulos, K., Sritanyaratana, L.: Showing face in video instruction: effects on information retention, visual attention, and affect. In: SIGCHI Conference on Human Factors in Computing Systems, pp. 2095–2102. ACM (2014)

    Google Scholar 

  15. Li, N., Kidzinski, L., Jermann, P., Dillenbourg, P.: How do in-video interactions reflect perceived video difficulty? In: European MOOCs Stakeholder Summit, No. EPFL-CONF-207968, pp. 112–121. PAU Education (2015)

    Google Scholar 

  16. Li, N., Kidziński, Ł., Jermann, P., Dillenbourg, P.: MOOC video interaction patterns: what do they tell us? In: Conole, G., Klobučar, T., Rensing, C., Konert, J., Lavoué, É. (eds.) EC-TEL 2015. LNCS, vol. 9307, pp. 197–210. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24258-3_15

    Chapter  Google Scholar 

  17. Lofi, C.: Measuring semantic similarity and relatedness with distributional and knowledge-based approaches. Database Soc. Japan 14(3), 1–9 (2016)

    Google Scholar 

  18. Mesbah, S., Fragkeskos, K., Lofi, C., Bozzon, A., Houben, G.-J.: Semantic annotation of data processing pipelines in scientific publications. In: Blomqvist, E., Maynard, D., Gangemi, A., Hoekstra, R., Hitzler, P., Hartig, O. (eds.) ESWC 2017, Part I. LNCS, vol. 10249, pp. 321–336. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58068-5_20

    Chapter  Google Scholar 

  19. Mesbah, S., Lofi, C., Valle Torre, M., Bozzon, A., Houben, G.J.: TSE-NER: an iterative approach for long-tailentity extraction in scientific publications. In: International Semantic Web Conference. Springer (2018)

    Google Scholar 

  20. Mihalcea, R., Tarau, P.: Textrank: Bringing order into text. In: Conference on Empirical Methods in Natural Language Processing (2004)

    Google Scholar 

  21. Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems, pp. 3111–3119 (2013)

    Google Scholar 

  22. Miranda, S., Ritrovato, P.: Automatic extraction of metadata from learning objects. In: Intelligent Networking and Collaborative Systems (INCoS), pp. 704–709. IEEE (2014)

    Google Scholar 

  23. Pan, L., Wang, X., Li, C., Li, J., Tang, J.: Course concept extraction in MOOCS via embedding-based graph propagation. In: International Joint Conference on Natural Language Processing, vol. 1, pp. 875–884 (2017)

    Google Scholar 

  24. Parameswaran, A., Garcia-Molina, H., Rajaraman, A.: Towards the web of concepts: extracting concepts from large datasets. VLDB Endow. 3(1–2), 566–577 (2010)

    Article  Google Scholar 

  25. Parliament, E.: Opening up education: Innovative teaching and learning for all through new technologies and open educational resources. Communication from the commission to the European Parliament (2013)

    Google Scholar 

  26. Rose, S., Engel, D., Cramer, N., Cowley, W.: Automatic keyword extraction from individual documents. In: Berry, M.W., Kogan, J. (eds.) Text Mining: Applications and Theory, pp. 1–20. Wiley, Hoboken (2010)

    Google Scholar 

  27. Sarikaya, R.: The technology behind personal digital assistants: an overview of the system architecture and key components. IEEE Signal Process. Mag. 34(1), 67–81 (2017)

    Article  Google Scholar 

  28. Van der Sluis, F., Ginn, J., Van der Zee, T.: Explaining student behavior at scale: the influence of video complexity on student dwelling time. In: ACM Conference on Learning @ Scale, L@S 2016, pp. 51–60. ACM, New York, NY, USA (2016)

    Google Scholar 

  29. Tsironis, A., Katsanos, C., Xenos, M.: Comparative usability evaluation of three popular MOOC platforms. In: 2016 IEEE Global Engineering Education Conference (EDUCON), pp. 608–612. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sepideh Mesbah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mesbah, S., Chen, G., Valle Torre, M., Bozzon, A., Lofi, C., Houben, GJ. (2018). Concept Focus: Semantic Meta-Data for Describing MOOC Content. In: Pammer-Schindler, V., Pérez-Sanagustín, M., Drachsler, H., Elferink, R., Scheffel, M. (eds) Lifelong Technology-Enhanced Learning. EC-TEL 2018. Lecture Notes in Computer Science(), vol 11082. Springer, Cham. https://doi.org/10.1007/978-3-319-98572-5_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-98572-5_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-98571-8

  • Online ISBN: 978-3-319-98572-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy