Abstract
We present a Matlab toolbox, called “FockBox”, handling Fock spaces and objects associated with Fock spaces: scalars, ket and bra vectors, and linear operators. We give brief application examples from computational linguistics, semantics processing, and quantum logic, demonstrating the use of the toolbox.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Here we adopt Dirac’s bra-ket-notation as “a neat and concise way of writing, in a single scheme, both the abstract quantities themselves and their coordinates.” [3].
- 2.
This is an actual problem, e.g., for semantic modeling (see Sect. 4.2) where a ket representing a feature-value relation comprising a moderate number of \(2^8=256\) different feature and value symbols would already exceed \(2^{64}\) row indexes for depths \(>\!8\).
- 3.
These operations are not “coordinate-free” in the sense that they are not compatible with a change of orthonormal basis of Hilbert space.
- 4.
Note that the representation of a sparse matrix \(\mathbf {x}\) in memory is just a list containing the elements of set x.
- 5.
The exact data are reported by Moore [13]. Busemeyer and Bruza use play data for their computations displaying only some tendency of the reported data.
- 6.
A model for quantum measurement is just a projection followed by a preparation.
References
Aerts, D.: Quantum structure in cognition. J. Math. Psychol. 53(5), 314–348 (2009)
Busemeyer, J.R., Bruza, P.D. (eds.): Quantum Models of Cognition and Decision. Cambridge University Press, New York (2012)
Dirac, P.A.M.: A new notation for quantum mechanics. Math. Proc. Camb. Philos. Soc. 35(3), 416–418 (1939). https://doi.org/10.1017/S0305004100021162
Fock, V.A.: Konfigurationsraum und zweite Quantelung. Z. Phys. 75, 622–647 (1932)
Fréchet, M.: Sur les ensembles de fonctions et les opérations linéaires. C. R. Acad. Sci. Paris 144, 1414–1416 (1907)
beim Graben, P., Gerth, S.: Geometric representations for minimalist grammars. J. Logic Lang. Inf. 21(4), 393–432 (2012)
beim Graben, P., Huber, M., Römer, R., Schmitt, I., Wolff: M.: Der Fockraum als Labyrinth: Wissensrepräsentation und Sprachverarbeitung am Beispiel des Mouse-Maze-Problems. In: Berton, A., et al. (eds.) Elektronische Sprachsignalverarbeitung 2018, pp. 167–174. TUDpress (2018)
Haag, R.: Local Quantum Physics: Fields, Particles, Algebras. Springer, Berlin (1992). https://doi.org/10.1007/978-3-642-61458-3
Hale, J.T.: What a rational parser would do. Cogn. Sci. 35(3), 399–443 (2011)
Hopcroft, J.E., Ullman, J.D.: Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Menlo Park (1979)
Huber, M., Römer, R.: Agenten in höheren Sphären. Quantenmechanische Situationsmodellierung am Beispiel des Mouse-Maze-Problems. In: Berton, A., et al. (eds.) Elektronische Sprachsignalverarbeitung 2018, pp. 127–134. TUDpress (2018)
Lehrack, S., Schmitt, I.: QSQL: incorporating logic-based retrieval conditions into SQL. In: Kitagawa, H., Ishikawa, Y., Li, Q., Watanabe, C. (eds.) DASFAA 2010. LNCS, vol. 5981, pp. 429–443. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12026-8_33
Moore, D.W.: Measuring new types of question-order effects: additive and subtractive. Public Opin. Q. 66(1), 80–91 (2002)
Riesz, F.: Sur une espèce de géométrie analytique des systèmes de fonctions sommables. C. R. Acad. Sci. Paris 144, 1409–1411 (1907)
Schmitt, I.: QQL: a DB&IR query language. VLDB J. 17(1), 39–56 (2008)
Schmitt, I., Römer, R., Wirsching, G., Wolff, M.: Denormalized quantum density operators for encoding semantic uncertainty in cognitive agents. In: 8th IEEE International Conference on Cognitive Infocommunications CogInfoCom 2017 Proceedings, 11–14 September 2017, Debrecen, Hungary, pp. 165–170 (2017)
Smolensky, P.: Symbolic functions from neural computation. Philos. Trans. A Math. Phys. Eng. Sci. 370(1971), 3543–3569 (2012)
Smolensky, P., Legendre, G.: The Harmonic Mind. From Neural Computation to Optimality-Theoretic Grammar Volume I: Cognitive Architecture. MIT Press, Cambridge (2006)
Wirsching, G., Huber, M., Kölbl, C., Lorenz, R., Römer, R.: Semantic dialogue modeling. In: Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Müller, V.C. (eds.) Cognitive Behavioural Systems. LNCS, vol. 7403, pp. 104–113. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34584-5_8
Wolff, M., Römer, R., Wirsching, G.: Towards coping and imagination for cognitive agents. In: 6th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), Györ (Hungary), 9–21 October 2015, pp. 307–312 (2015). https://doi.org/10.1109/CogInfoCom.2015.7390609
Wolff, M., Wirsching, G., Huber, M., beim Graben, P., Römer, R., Schmitt, I.: FockBox - a Fock space toolbox for computational cognition. https://github.com/matthias-wolff/FockBox. Accessed 20 June 2018
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer Nature Switzerland AG
About this paper
Cite this paper
Wolff, M., Wirsching, G., Huber, M., beim Graben, P., Römer, R., Schmitt, I. (2018). A Fock Space Toolbox and Some Applications in Computational Cognition. In: Karpov, A., Jokisch, O., Potapova, R. (eds) Speech and Computer. SPECOM 2018. Lecture Notes in Computer Science(), vol 11096. Springer, Cham. https://doi.org/10.1007/978-3-319-99579-3_77
Download citation
DOI: https://doi.org/10.1007/978-3-319-99579-3_77
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-99578-6
Online ISBN: 978-3-319-99579-3
eBook Packages: Computer ScienceComputer Science (R0)