Abstract
Evolutionary designs based upon Artificial Ontogenies are beginning to cross from virtual to real environments. In such systems the evolved genotype is an indirect, procedural representation of the final structure. To date, most Artificial Ontogenies have relied upon an error-free development process to generate their phenotypic structure. In this paper we explore the effects and consequences of developmental error on Artificial Ontogenies. In a simple evolutionary design task, and using an indirect procedural representation that lacks the ability to test intermediate results of development, we demonstrate the emergence of ontogenic mechanisms which are able to cope with developmental error.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lohn, J., Crawford, J., Globus, A., Hornby, G., Kraus, W., Larchev, G., Pryor, A., Sriviastava, D.: Evolvable systems for space applications. In: International Conference on Space Mission Challenges for Information Technology, SMC-IT (2003)
Pollack, J.B., Lipson, H., Hornby, G., Funes, P.: Three generations of automatically designed robots. Artifial Life 7, 215–223 (2001)
Kumar, S., Bentley, P.J.: Computational embryology: past, present and future. In: Advances in evolutionary computing: theory and applications, pp. 461–477. Springer, New York (2003)
Stanley, K.O., Miikkulainen, R.: A taxonomy for articial embryogeny. Artificial Life 9, 93–130 (2002)
Jakobi, N., Husbands, P., Harvey, I.: Noise and the reality gap: The use of simulation in evolutionary robotics. In: Morán, F., Merelo, J.J., Moreno, A., Chacon, P. (eds.) ECAL 1995. LNCS, vol. 929, pp. 704–720. Springer, Heidelberg (1995)
Sims, K.: Evolving virtual creatures. In: Proceedings of the 21st annual conference on Computer graphics and interactive techniques, pp. 15–22. ACM Press, New York (1994)
Hornby, G.S.: Generative Representations for Evolutionary Design Automation. PhD thesis, Brandeis University, Dept. of Computer Science, Boston, MA, USA (2003)
Hornby, G.S., Pollack, J.B.: The advantages of generative grammatical encodings for physical design. In: Proceedings of the 2001 Congress on Evolutionary Computation CEC 2001, COEX, World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea, pp. 600–607. IEEE Press, Los Alamitos (2001)
Toussaint, M.: Demonstrating the evolution of complex genetic representations: An evolution of artificial plants. In: Cantú-Paz, E., Foster, J.A., Deb, K., Davis, L., Roy, R., O’Reilly, U.-M., Beyer, H.-G., Kendall, G., Wilson, S.W., Harman, M., Wegener, J., Dasgupta, D., Potter, M.A., Schultz, A., Dowsland, K.A., Jonoska, N., Miller, J., Standish, R.K. (eds.) GECCO 2003. LNCS, vol. 2723, Springer, Heidelberg (2003)
Bongard, J.C., Pfeifer, R.: Repeated structure and dissociation of genotypic and phenotypic complexity in artificial ontogeny. In: Spector, L., Goodman, E.D., Wu, A., Langdon, W.B., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M.H., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference (GECCO 2001), San Francisco, California, USA, pp. 829–836. Morgan Kaufmann, San Francisco (2001)
Funes, P.: Evolution of Complexity in Real-World Domains. PhD thesis, Brandeis University, Dept. of Computer Science, Boston, MA, USA (2001)
Koza, J.R.: Genetic Programming: on the Programming of Computers by Means of Natural Selection. MIT Press, Cambridge (1992)
Viswanathan, S., Pollack, J.: On the evolvability of replication fidelity in stochastic construction. Technical Report CS-04-248, Brandeis University (2003)
Coello, C.A.C.: An updated survey of evolutionary multiobjective optimization techniques: State of the art and future trends. In: Angeline, P.J., Michalewicz, Z., Schoenauer, M., Yao, X., Zalzala, A. (eds.) Proceedings of the Congress on Evolutionary Computation, Mayflower Hotel, Washington D.C., USA, vol. 1, pp. 3–13. IEEE Press, Los Alamitos (1999)
Fonseca, C.M., Fleming, P.J.: Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization. In: Genetic Algorithms: Proceedings of the Fifth International Conference, pp. 416–423. Morgan Kaufmann, San Francisco (1993)
Winston, H.P.: Learning By Analyzing Differences. In: Artificial Intelligence, 3rd edn., pp. 349–364. Addison-Wesley, Reading (1993)
De Jong, E.D., Watson, R.A., Pollack, J.B.: Reducing bloat and promoting diversity using multi-objective methods. In: Spector, L., Goodman, E., Wu, A., Langdon, W., Voigt, H.M., Gen, M., Sen, S., Dorigo, M., Pezeshk, S., Garzon, M., Burke, E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference, GECCO-2001, San Francisco, CA, pp. 11–18. Morgan Kaufmann Publishers, San Francisco (2001)
Langdon, W.B.: The evolution of size in variable length representations. In: 1998 IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA, pp. 633–638. IEEE Press, Los Alamitos (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rieffel, J., Pollack, J. (2004). The Emergence of Ontogenic Scaffolding in a Stochastic Development Environment. In: Deb, K. (eds) Genetic and Evolutionary Computation – GECCO 2004. GECCO 2004. Lecture Notes in Computer Science, vol 3102. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-24854-5_83
Download citation
DOI: https://doi.org/10.1007/978-3-540-24854-5_83
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-22344-3
Online ISBN: 978-3-540-24854-5
eBook Packages: Springer Book Archive