Skip to main content

A Cooperative Framework Based on Local Search and Constraint Programming for Solving Discrete Global Optimisation

  • Conference paper
Advances in Artificial Intelligence – SBIA 2004 (SBIA 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3171))

Included in the following conference series:

Abstract

Our research has been focused on developing cooperation techniques for solving large scale combinatorial optimisation problems using Constraint Programming with Local Search. In this paper, we introduce a framework for designing cooperative strategies. It is inspired from recent research carried out by the Constraint Programming community. For the tests that we present in this work we have selected two well known techniques: Forward Checking and Iterative Improvement. The set of benchmarks for the Capacity Vehicle Routing Problem shows the advantages to use this framework.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bockmayr, A., Kasper, T.: Branch-and-Infer: A unifying framework for integer and finite domain constraint programming. INFORMS J. Computing 10(3), 287–300 (1998); Also available as Technical Report MPI-I-97-2-008 of the Max Planck Institut für Informatik, Saarbrücken, Germany

    Article  MATH  MathSciNet  Google Scholar 

  2. Castro, C., Monfroy, E.: A Control Language for Designing Constraint Solvers. In: Bjorner, D., Broy, M., Zamulin, A.V. (eds.) PSI 1999. LNCS, vol. 1755, pp. 402–415. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  3. Castro, C., Monfroy, E.: Basic Operators for Solving Constraints via Collaboration of Solvers. In: Campbell, J., Roanes-Lozano, E. (eds.) AISC 2000. LNCS (LNAI), vol. 1930, pp. 142–156. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  4. Castro, C., Monfroy, E.: Towards a framework for designing constraint solvers and solver collaborations. Joint Bulletin of the Novosibirsk Computing Center (NCC) and the A. P. Ershov Institute of Informatics Systems (IIS). Series: Computer Science. Russian Academy of Sciences, Siberian Branch 16, 1–28 (December 2001)

    Google Scholar 

  5. Focacci, F., Laburthe, F., Lodi, A.: Constraint and Integer Programming: Toward a Unified Methodology. In: Local Search and Constraint Programming, November 2003, ch. 9, Kluwer, Dordrecht (2003)

    Google Scholar 

  6. Granvilliers, L., Monfroy, E., Benhamou, F.: Symbolic-Interval Cooperation in Constraint Programming. In: Proceedings of the 26th International Symposium on Symbolic and Algebraic Computation (ISSAC 2001), University of Western Ontario, London, Ontario, Canada, pp. 150–166. ACM Press, New York (2001)

    Chapter  Google Scholar 

  7. Haralick, R.M., Elliot, G.L.: Increasing Tree Search Efficiency for Constraint Satisfaction Problems. Artificial Intelligence 14, 263–313 (1980)

    Article  Google Scholar 

  8. Jussien, Lhomme: Local search with constraint propagation and conflict-based heuristics. Artificial Intelligence 139, 21–45 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kumar, V.: Algorithms for Constraint-Satisfaction Problems: A Survey. Artificial Intelligence Magazine 13(1), 32–44 (1992)

    Google Scholar 

  10. Mackworth, A.K.: Consistency in Networks of Relations. Artificial Intelligence 8, 99–118 (1977)

    Article  MATH  Google Scholar 

  11. Marti, P., Rueher, M.: A Distributed Cooperating Constraints Solving System. International Journal of Artificial Intelligence Tools 4(1-2), 93–113 (1995)

    Google Scholar 

  12. Monfroy, E., Rusinowitch, M., Schott, R.: Implementing Non-Linear Constraints with Cooperative Solvers. In: George, K.M., Carroll, J.H., Oppenheim, D., Hightower, J. (eds.) Proceedings of ACM Symposium on Applied Computing (SAC 1996), Philadelphia, PA, USA, February 1996, pp. 63–72. ACM Press, New York (1996)

    Chapter  Google Scholar 

  13. Prestwich: Combining the scalability of local search with the pruning techniques of systematic search. Annals of Operations Research 115, 51–72 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  14. Solomon, M.: Algorithms for the vehicle routing and scheduling problem with time window constraints. Operations Research, 254–365 (1987)

    Google Scholar 

  15. Tsang, E.: Foundations of Constraint Satisfaction. Academic Press, London (1993)

    Google Scholar 

  16. Zahn, M., Hower, W.: Backtracking along with constraint processing and their time complexities. Journal of Experimental and Theoretical Artificial Intelligence 8, 63–74 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Castro, C., Moossen, M., Riff, M.C. (2004). A Cooperative Framework Based on Local Search and Constraint Programming for Solving Discrete Global Optimisation. In: Bazzan, A.L.C., Labidi, S. (eds) Advances in Artificial Intelligence – SBIA 2004. SBIA 2004. Lecture Notes in Computer Science(), vol 3171. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-28645-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-28645-5_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23237-7

  • Online ISBN: 978-3-540-28645-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy