Skip to main content

Real-Time Independent Component Analysis Based on Gradient Learning with Simultaneous Perturbation Stochastic Approximation

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3214))

Abstract

We present a novel algorithm for independent component analysis (ICA) based on gradient learning with simultaneous perturbation stochastic approximation (SPSA). This algorithm can work well both in batch mode and in on-line mode of ICA processing. It converges very fast even for non-stationary, and/or non-identically independent distributed (non-I.I.D.) signals, so that the algorithm is very suitable for most real-time applications. In this paper, theories and implementations of the algorithm are described. Results of computer simulation are also presented to demonstrate the effectiveness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bell, A.J., Sejnowski, T.J.: An information maximization approach to blind separation and blind deconvolution. Neural Computation 7, 1129–1159 (1995)

    Article  Google Scholar 

  2. Comon, P.: Independent component analysis, a new concept? Signal Processing 36(3), 287–314 (1994)

    Article  MATH  Google Scholar 

  3. Amari, S., Cichocki, A., Yang, H.H.: A new learning algorithm for blind signal separation. In: Touretzky, D.S., Mozer, M.C., Hasselmo, M.E. (eds.) Advances in Neural Information Processing Systems, vol. 8, pp. 757–763. MIT Press, Cambridge (1996)

    Google Scholar 

  4. Molgedey, L., Schuster, H.G.: Separation of a mixture of independent signals using time delayed correlations. Physical Review Letter 72(23), 3634–3637 (1994)

    Article  Google Scholar 

  5. Matsuoka, K., Ohya, M., Kawamoto, M.: A neural net for blind separation of nonstationary signals. Neural Networks 8(3), 411–419 (1995)

    Article  Google Scholar 

  6. Cardoso, J., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM Journal of Matrix Analysis and Applications 17(1), 161–164 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Lee, T.-W., Girolami, M., Sejnowski, T.J.: Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and super-gaussian sources. Neural Computation 11(2), 417–441 (1999)

    Article  Google Scholar 

  8. Hyvarinen, A.: Fast and robust fixed-point algorithms for Independent Component Analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)

    Article  Google Scholar 

  9. Kiefer, J., Wolfowitz, J.: Stochastic Estimation of a Regression Function. Annals of Mathematical Statistics 23, 462–466 (1952)

    Article  MATH  MathSciNet  Google Scholar 

  10. Spall, J.C.: A Stochastic Approximation Algorithm for Large-Dimensional Systems in the Kiefer-Wolfowitz Setting. In: Proceedings of the IEEE Conference on Decision and Control, pp. 1544–1548 (1988)

    Google Scholar 

  11. Spall, J.C.: Multivariate Stochastic Approximation Using a Simultaneous Perturbation Gradient Approximation. IEEE Transactions on Automatic Control 37, 332–341 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  12. Lambert, R.H., Nikias, C.L.: Blind deconvolution of multipath mixtures. In: Haykin, S. (ed.) Unsupervised Adaptive Filtering, vol. 1, pp. 377–436. John Wiley & Sons, Inc., Chichester (2000)

    Google Scholar 

  13. Murata, N., Ikeda, S., Ziehe, A.: An approach to blind source separation based on temporal structure of speech signals, BSIS Technical Reports, vol. 98-2 (1998)

    Google Scholar 

  14. Ogawa, M., Asano, F., Ikeda, S., Asoh, H., Kitawaki, N.: Blind source separation for acoustic signals using subspace method and frequency-domain infomax, Technical Report of IEICE, vol. EA2000-50, pp. 15-22 (2000)

    Google Scholar 

  15. Ding, S., Otsuka, M., Ashizawa, M., Niitsuma, T., Sugai, K.: Blind source separation of real-world acoustic signals based on ICA in time-frequency-domain, Technical Report of IEICE, vol. EA2001-1, pp. 1-8 (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ding, S., Huang, J., Wei, D., Omata, S. (2004). Real-Time Independent Component Analysis Based on Gradient Learning with Simultaneous Perturbation Stochastic Approximation. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30133-2_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30133-2_47

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23206-3

  • Online ISBN: 978-3-540-30133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy