Skip to main content

Neuro-Genetic Approach for Bankruptcy Prediction Modeling

  • Conference paper
Knowledge-Based Intelligent Information and Engineering Systems (KES 2004)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 3214))

  • 964 Accesses

Abstract

Artificial neural network (ANN) modeling has become the dominant modeling paradigm for bankruptcy prediction. To further improve the neural network’s prediction capability, the integration of the ANN models and the hybridization of ANN with relevant paradigms such as evolutionary computing has been demanded. This paper first attempted to apply neurogenetic approach to bankruptcy prediction problem for finding optimal weights and confirmed that the approach can be a good methodology though it currently could not outperform the backpropagation learning algorithm. The result of this paper shows a possibility of neurogenetic approach to bankruptcy prediction problem since the simple neurogenetic approach produced a meaningful performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Angeline, P., Saunders, G., Pollack, J.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Transactions on Neural Networks 5(1), 54–65 (1994)

    Article  Google Scholar 

  2. Atiya, A.: Bankruptcy prediction for credit risk using neural networks: A survey and new results. IEEE transactions on neural networks 12(4), 929–935 (2001)

    Article  Google Scholar 

  3. Belanche, L.: A Case Study in Neural Network Training with the Breeder Genetic Algorithm, Research Report LSI-00-7-R, Universitat Politècnica de Catalunya (2000)

    Google Scholar 

  4. Bishop, J.M., Bushnell, M.J., Usher, A., Westland, S.: Genetic optimization of neural network architectures for colour recipe prediction. In: Artificial pleural Networks and Genetic Algorithms, pp. 719–725. Springer, New York (1993)

    Google Scholar 

  5. Charalambous, C., Charitou, A., Kaourou, F.: Comparative Analysis of Artificial Neural Network Models: Application in Bankruptcy Prediction. Annals of operations research 99(1/4), 403–426 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Coats, P., Fant, F.: Recognizing finanical distress patterns using a neural network tool. Financial Management 22(3), 142–156 (1993)

    Article  Google Scholar 

  7. Fahlman, S., Lebiere, C.: The cascade-correlation learning architecture. In: Touretzky, D.S. (ed.) Advances in Neural Information Processing Systems II, pp. 524–532. Morgan Kaufmann, San Mateo (1990)

    Google Scholar 

  8. Fogel, D., Fogel, L., Porto, V.: Evolving neural networks. Biol. Cybern. 63, 487–493 (1990)

    Article  Google Scholar 

  9. Hansen, J., Meservy, R.: Learning experiments with genetic optimization of a generalized regression and neural network. Decision Support Systems 18, 317–325 (1996)

    Google Scholar 

  10. Harp, S., Samad, T.: Optimizing neural networks with genetic algorithms. In: Proceedings of the American Power Conference, Chicago, pp. 1138–1143 (1991)

    Google Scholar 

  11. Kitano, H.: Empirical Studies on the Speed of Convergence of Neural Network Training using Genetic Algorithms. In: Eighth National Conference on Artificial Intelligence, vol. II, pp. 798–795. AAAI, MIT Press (1990)

    Google Scholar 

  12. Lacher, R., Coats, P., Sharma, S., Fant, L.: A neural network for classifying the financial health of a firm. European Journal of Operational Research 85(1), 53–66 (1995)

    Article  MATH  Google Scholar 

  13. Laitinen, E., Laitinen, T.: Bankruptcy prediction Application of the Taylor’s expansion in logistic regression. International Review of Financial Analysis 9, 327–349 (2000)

    Article  Google Scholar 

  14. Lin, S., Punch III, W., Goodman, E.: A Hybrid Model Utilizing Genetic Algorithms and Hopfield Neural Networks for Function Optimization. In: Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  15. McKee, T., Greenstein, M.: Predicting Bankruptcy Using Recursive Partitioning and a Realistically Proportioned Data Set. Journal of Forecasting 19, 219–230 (2000)

    Article  Google Scholar 

  16. Miller, G., Todd, P., Hedge, S.: Designing Neural Networks Using Genetic Algorithms. In: Proceedings of the 3rd International Conference on Genetic Algorithms. Morgan Kaufmann, San Mateo (1989)

    Google Scholar 

  17. Montana, D., Davis, C.: Training Feedforward Neuronal Networks Using Genetic Algorithms, Technical Report, BBN Systems and Technologies Inc., Cambridge(MA) (1989)

    Google Scholar 

  18. Odom, M., Sharda, R.: A neural networks model for bankruptcy prediction. In: Proceedings of the IEEE International Conference on Neural Network, vol. 2, pp. 163–168 (1990)

    Google Scholar 

  19. Radcliffe, N.: Genetic set recombination and its application to neural network topology optimization. Technical Report EPCC-TR-91-21. Edinburgh Parallel Computing Center, Univ. of Edinburgh, Scotland (1991)

    Google Scholar 

  20. Schaffer, J., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: Proceedings of the International Workshop on Combinations of Genetic Algorithms and Neural Networks, Baltimore, June 6, 1992, pp. 1–37 (1992)

    Google Scholar 

  21. Sexton, R., Dorsey, R., Johnson, J.: Toward global optimization of neural networks: A comparison of the genetic algorithm and backpropagation. Decision Support Systems 22, 171–185 (1998)

    Article  Google Scholar 

  22. Wang, S.: The unpredictability of standard backpropagation neural networks in classification applications. Management Science 41(3), 555–559 (1995)

    Article  MATH  Google Scholar 

  23. Whitley, D.: Genetic Algorithms and Neural Networks. In: Periaux, Galan, Cuesta (eds.) Genetic Algorithms in Engineering and Computer Science. John Wiley, Chichester (1995)

    Google Scholar 

  24. Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  25. Zhang, G., Hu, Y., Patuwo, E., Indro, C.: Artificial neural networks in bankruptcy prediction: General framework and cross-validation analysis. European journal of operational research 116(1), 16–32 (1999)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shin, Ks., Lee, K.J. (2004). Neuro-Genetic Approach for Bankruptcy Prediction Modeling. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds) Knowledge-Based Intelligent Information and Engineering Systems. KES 2004. Lecture Notes in Computer Science(), vol 3214. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30133-2_85

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-30133-2_85

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-23206-3

  • Online ISBN: 978-3-540-30133-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy