Abstract
Conserved intervals were recently introduced as a measure of similarity between genomes whose genes have been shuffled during evolution by genomic rearrangements. Phylogenetic reconstruction based on such similarity measures raises many biological, formal and algorithmic questions, in particular the labelling of internal nodes with putative ancestral gene orders, and the selection of a good tree topology. In this paper, we investigate the properties of sets of permutations associated to conserved intervals as a representation of putative ancestral gene orders for a given tree topology. We define set-theoretic operations on sets of conserved intervals, together with the associated algorithms, and we apply these techniques, in a manner similar to the Fitch-Hartigan algorithm for parsimony, to a subset of chloroplast genes of 13 species.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bader, D.A., Moret, B.M.E., Yan, M.: A linear-time algorithm for computing inversion distances between signed permutations with an experimental study. J. Comput. Biol. 8(5), 483–491 (2001)
Bergeron, A., Blanchette, M., Chateau, A., Chauve, C.: Implementation of operations on sets of conserved intervals. Technical report, Computer Science Department, UQAM (to appear)
Bergeron, A., Mixtaci, J., Stoye, J.: The reversal distance problem. In: Gascuel, O. (ed.) Mathematics of phylogeny and evolution, Oxford University Press, Oxford (2004)
Bergeron, A., Stoye, J.: On the similarity of sets of permutations and its applications to genome comparison. In: Warnow, T.J., Zhu, B. (eds.) COCOON 2003. LNCS, vol. 2697, pp. 68–79. Springer, Heidelberg (2003)
Blanchette, M., Kunisawa, T., Sankoff, D.: Gene order breakpoint evidence in animal mitochondrial phylogeny. J. Mol. Evol. 19(2), 193–203 (1999)
Blanchette, M., Kunisawa, T., Sankoff, D.: Parametric genome rearrangement. Gene 172(1), GC11–17 (2001)
Booth, K.S., Lueker, G.S.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13(3), 335–379 (1976)
Bourque, G., Pevzner, P.A.: Genome-scale evolution: Reconstructing gene orders in the ancestral species. Genome Res. 12(1), 26–36 (2002)
Caprara, A.: Formulations and complexity of multiple sorting by reversals. In: 3rd Annual International Conference on Research in Computational Molecular Biology (RECOMB 1999), pp. 84–93. ACM Press, New York (1999)
Cosner, M.E., Jansen, R.K., Moret, B.M.E., Raubeson, L.A., Wang, L.S., Warnow, T., Wyman, S.K.: An empirical comparison of phylogenetic methods on chloroplast gene order data in campanulaceae. In: Sankoff, D., Nadeau, J. (eds.) Comparative Genomics: Empirical and Analytical Approaches to Gene Order Dynamics, Map Alignment, and the Evolution of Gene Families (DCAF 2000), pp. 99–212. Kluwer Academic Publishers, Dordrecht (2000)
Felsenstein, J.: Inferring phylogenies. Sinauer Associates (2003)
Fitch, W.: Toward defining the course of evolution: Minimum change for a specific tree topology. Systematic Zoology 20, 406–416 (1971)
Hannenhalli, S., Pevzner, P.A.: Transforming men into mice (polynomial algorithm for genomic distance problem). In: 36th Annual Symposium on Foundations of Computer Science (FOCS 1995), pp. 581–592. IEEE Comput. Soc. Press, Los Alamitos (1995)
Hannenhalli, S., Pevzner, P.A.: Transforming cabbage into turnip: polynomial algorithm for sorting signed permutations by reversals. J. ACM 46(1), 1–27 (1999)
Hartigan, J.A.: Minimum mutation fits to a given tree. Biometrics 29, 53–65 (1973)
Larget, B., Simon, D.L., Kadane, J.B.: Bayesian phylogenetic inference from animal mitochondrial genome arrangements. J. R. Stat. Soc. Ser. B Stat. Methodol. 64(4), 681–693 (2002)
Moret, B.M.E., Siepel, A.C., Tang, J., Liu, T.: Inversion medians outperform breakpoint medians in phylogeny reconstruction from gene-order data. In: Guigó, R., Gusfield, D. (eds.) WABI 2002. LNCS, vol. 2452, pp. 521–536. Springer, Heidelberg (2002)
Moret, B.M.E., Tang, J., Warnow, T.: Reconstructing phylogenies from genecontent and gene-order data. In: Gascuel, O. (ed.) Mathematics of phylogeny and evolution, Oxford University Press, Oxford (2004) (to appear)
Moret, B.M.E., Wyman, S., Bader, D.A., Warnow, T., Yan, M.: A new implementation and detailed study of breakpoint analysis. In: 6th Pacific Symposium on Biocomputing (PSB 2001), pp. 583–594 (2001)
Sankoff, D.: Rearrangements and chromosomal evolution. Curr. Opin. Genet. Dev. 13(6), 583–587 (2003)
Sankoff, D., Blanchette, M.: Multiple genome rearrangement and breakpoint phylogeny. J. Comput. Biol. 5(3), 555–570 (1998)
Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., Cedergren, R.: Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proc. Natl. Acad. Sci. U.S.A. 89(14), 6575–6579 (1992)
Tang, J., Moret, B.M.E.: Scaling up accurate phylogenetic reconstruction from gene-order data. Bioinformatics 19(Suppl. 1), i305–312 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2004 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bergeron, A., Blanchette, M., Chateau, A., Chauve, C. (2004). Reconstructing Ancestral Gene Orders Using Conserved Intervals. In: Jonassen, I., Kim, J. (eds) Algorithms in Bioinformatics. WABI 2004. Lecture Notes in Computer Science(), vol 3240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-30219-3_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-30219-3_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-23018-2
Online ISBN: 978-3-540-30219-3
eBook Packages: Springer Book Archive