Abstract
Another formulation of the notion of rough relations is presented. Instead of using two equivalence relations on two universes, or a joint equivalence relation on their Cartesian product, we start from specific classes of binary relations obeying certain properties. The chosen class of relations is a subsystem of all binary relations and represents relations we are interested. An arbitrary relation is approximated by a pair of relations in the chosen class.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cattaneo, G.: Abstract approximation spaces for rough theories. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 59–98. Physica-Verlag, Heidelberg (1998)
Cohn, P.M.: Universal Algebra. Harper and Row Publishers, New York (1965)
Düntsch, I.: Rough sets and algebras of relations. In: Orlowska, E. (ed.) Incomplete Information: Rough Set Analysis, pp. 95–108. Physica-Verlag, Heidelberg (1998)
Greco, S., Matarazzo, B., Slowinski, R.: Rough approximation of preferential information by dominance relations. In: Proceedings of Fourth International Workshop on Rough Sets, Fuzzy Sets, and Machine Discovery, pp. 125–130 (1996)
Greco, S., Matarazzo, B., Slowinski, R.: A new rough set approach to multicriteria and multiattribute classification. In: Polkowski, L., Skowron, A. (eds.) Rough Sets and Current Trends in Computing, pp. 60–67. Springer, Berlin (1998)
Pawlak, Z.: Rough sets. International Journal of Computer and Information Sciences 11, 341–356 (1982)
Pawlak, Z.: Rough relations. Bulletin of Polish Academy of Sciences, Technical Sciences 34, 557–590 (1986)
Pawlak, Z.: Rough functions. Bulletin of Polish Academy of Sciences, Technical Sciences 35, 249–251 (1987)
Pawlak, Z.: Rough sets, rough relations and rough functions. Fundamenta Informaticae 27, 103–108 (1996)
Skowron, A., Stepaniuk, J.: Approximation of relations. In: Ziarko, W.P. (ed.) Rough Sets, Fuzzy Sets and Knowledge Discovery, pp. 161–166. Springer, London (1994)
Stepaniuk, J.: Properties and applications on rough relations. In: Proceedings of the Fifth International Workshop on Intelligent Information Systems, pp. 136–141 (1996)
Stepaniuk, J.: Approximation spaces in extensions of rough set theory. In: Polkowski, L., Skowron, A. (eds.) Rough Sets and Current Trends in Computing, pp. 290–297. Springer, Berlin (1998)
Stepaniuk, J.: Rough relations and logics. In: Polkowski, L., Skowron, A. (eds.) Rough Sets in Knowledge Discovery, pp. 248–260. Physica-Verlag, Heidelberg (1998)
Yao, Y.Y.: Two views of the theory of rough sets in finite universes. International Journal of Approximate Reasoning 15, 291–317 (1996)
Yao, Y.Y.: On generalizing Pawlak approximation operators. In: Polkowski, L., Skowron, A. (eds.) Rough Sets and Current Trends in Computing, pp. 298–307. Springer, Berlin (1998)
Yao, Y.Y.: A comparative study of fuzzy sets and rough sets. Information Sciences 109, 227–242 (1998)
Yao, Y.Y., Lin, T.Y.: Generalization of rough sets using modal logic. Intelligent Automation and Soft Computing, an International Journal 2, 103–120 (1996)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 1999 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Yao, Y.Y., Wang, T. (1999). On Rough Relations: An Alternative Formulation. In: Zhong, N., Skowron, A., Ohsuga, S. (eds) New Directions in Rough Sets, Data Mining, and Granular-Soft Computing. RSFDGrC 1999. Lecture Notes in Computer Science(), vol 1711. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-48061-7_12
Download citation
DOI: https://doi.org/10.1007/978-3-540-48061-7_12
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-66645-5
Online ISBN: 978-3-540-48061-7
eBook Packages: Springer Book Archive