Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
References
Barrico C, Antunes CH (2006) “Robustness Analysis in Multi-Objective Opti- mization”. Research Report N3/2006, INESC Coimbra, Portugal.
Barrico C, Antunes CH (2006) “A New Approach to Robustness Analysis in Multi-Objective Optimization”. Proceedings of the 7th International Confer- ence on Multi-Objective Programming and Goal Programming (MOPGP 2006). Loire Valley (Tours), France.
Barrico C, Antunes CH (2006) “Robustness Analysis in Multi-Objective Op- timization Using a Degree of Robustness Concept”. Proceedings of the 2006 IEEE World Congress on Computational Intelligence (WCCI 2006): 6778-6783.
Branke J. (1998) “Creating Robust Solutions by means of an Evolutionary Algorithm”. Parallel Problem Solving from Nature, Lecture Notes in Computer Science 1498, Springer: 119-128.
Branke J. (2000) “Efficient Evolutionary Algorithms for Searching Robust Solutions”. Adaptive Computing in Design and Manufacture (ACDM 2000), Springer: 275-286.
Branke J, Schmidh C (2005) “Faster Convergence by means of Fitness Estima- tion”. Soft Computing 9(1): 13-20.
Coello C, Veldhuizen D, Lamont G (2002) “Evolutionary Algorithms for Solving Multi-Objective Problems”. Kluwer Academic Publishers.
Deb K (2001) “Multi-Objective Optimization Using Evolutionary Algorithms”. John Wiley and Sons, New York.
Deb K, Gupta H (2004) “Introducing Robustness in Multiple-Objective Op- timization”. KanGAL Report Number 2004016, Kanpur Genetic Algorithms Laboratory, Indian Institute of Technology Kanpur, India.
Deb K, Gupta H (2005) “Searching for Robust Pareto-Optimal Solutions in Multi-Objective Optimization”. Proceedings of the Third International Con- ference of Evolutionary Multi-Criteria Optimization (EMO-2005): 150-164.
Deb K, Pratap A, Agarwal S, Meyarivan T (2002) “A fast and elitist multi- objective genetic algorithm: NSGA-II”. IEEE Transactions on Evolutionary Computation 6(2): 181-197.
Fonseca CM, Fleming PJ (1995) “An Overview of Evolutionary Algorithms in Multiobjective Optimization”. Evolutionary Computation 3(1): 1-16.
Gomes A, Antunes CH, Martins A (2004) “A multiple objective evolutionary approach for the design and selection of load control strategies”. IEEE Trans- actions on Power Systems 19(2): 1173-1180.
Hughes EJ (2001) “Evolutionary Multi-Objective Ranking with Uncertainty and Noise”. Proceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (EMO-2001): 329-343.
Jin Y, Branke J (2005) “Evolutionary Optimization in Uncertain Environments - A Survey”. IEEE Transactions on Evolutionary Computation 9(3): 1-15.
Jin Y, Sendhoff B (2003) “Trade-Off between Performance and Robustness: An Evolutionary Multiobjective Approach”. Proceedings of the Second Interna- tional Conference on Evolutionary Multi-Criterion Optimization (EMO-2003): 237-251.
Li M, Azarm S, Aute V (2005) “A Multi-Objective Genetic Algorithm for Robust Design Optimization”. Proceedings of Genetic and Evolutionary Com- putation Conference (GECCO’05): 771-778.
Lim D, Ong YS, Lee BS (2005) “Inverse Multi-Objective Robust Evolutionary Design Optimization in the Presence of Uncertainty”. Proceedings of Genetic and Evolutionary Computation Conference (GECCO’05): 55-62.
Ong YS, Nair PB, Lum KY (2005) “Max-Min Surrogate-Assisted Evolutionary Algorithm for Robust Aerodynamic Design”. IEEE Transactions on Evolution- ary Computation 10(4): 392-404.
Parmee IC (1996) “The Maintenance of Search Diversity for Effective Design Space Decomposition using Cluster-Oriented Genetic Algorithms (Cogas) and Multi-Agent Strategies (Gaant)”. Proceedings of the Second International Con- ference of Adaptive Computing in Engineering and Control: 128-138.
Teich J (2001) “Pareto-Front Exploration with Uncertain Objectives”. Pro- ceedings of the First International Conference on Evolutionary Multi-Criterion Optimization (EMO-2001): 314-328.
Tsutsui S, Ghosh A (1997) “Genetic Algorithm with a Robust Solution Search- ing Scheme”. IEEE Transactions on Evolutionary Computation 1(3): 201-219.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Barrico, C., Antunes, C.H. (2007). An Evolutionary Approach for Assessing the Degree of Robustness of Solutions to Multi-Objective Models. In: Yang, S., Ong, YS., Jin, Y. (eds) Evolutionary Computation in Dynamic and Uncertain Environments. Studies in Computational Intelligence, vol 51. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-49774-5_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-49774-5_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-49772-1
Online ISBN: 978-3-540-49774-5
eBook Packages: EngineeringEngineering (R0)