Abstract
An approach to automatic image annotation is proposed. Generally, the relation between visual characteristics and the annotation label is estimated from the annotated corpus and is used to predict label for new test image. Unfortunately, when limited number of images are annotated, with possible multiple labels per image, this relation cannot be reliably estimated. To cope with this problem, we propose taking into account information derived directly from other images in the dataset. This method extends naturally to semi-supervised setting where un-annotated images are also used select annotation labels. Experiment shows that the proposed method yields promising results.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Duygulu, P., Bernard, K., de Freitas, N., Forsyth, D.: Object recognition as machine translation: Learning a lexicon for a fixed image vocabulary. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 97–112. Springer, Heidelberg (2002)
Jeon, J., Lavrenko, V., Manmatha, R.: Automatic image annotation and retrieval using cross-media relevance models. In: Proceedings of the ACM SIRGIR 2003 (2003)
Feng, S., Manmatha, R., Lavrenko, V.: Multiple bernoulli relevance models for image and video annotation. In: Proceedings of the CVPR 2004 (2004)
Jeon, J., Manmatha, R.: Using maximum entropy for automatic image annotation. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, pp. 24–32. Springer, Heidelberg (2004)
Jin, R., Chai, J.Y., Si, L.: Effective automatic image annotation via a coherent language model and active learning. In: Proceedings of the 12th annual ACM international conference on Multimedia (2004)
Lavrenko, V., Manmatha, R., Jeon, J.: A model for learning the semantics of pictures. In: Advances in Neural Information Processing Systems (NIPS) (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marukatat, S. (2008). A New Model for Image Annotation. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2008. Lecture Notes in Computer Science(), vol 5012. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68125-0_99
Download citation
DOI: https://doi.org/10.1007/978-3-540-68125-0_99
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68124-3
Online ISBN: 978-3-540-68125-0
eBook Packages: Computer ScienceComputer Science (R0)