Skip to main content

Graph Mutual Reinforcement Based Bootstrapping

  • Conference paper
Information Retrieval Technology (AIRS 2008)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4993))

Included in the following conference series:

  • 1467 Accesses

Abstract

In this paper, we present a new bootstrapping method based on Graph Mutual Reinforcement (GMR-Bootstrapping) to learn semantic lexicons. The novelties of this work include 1) We integrate Graph Mutual Reinforcement method with the Bootstrapping structure to sort the candidate words and patterns; 2) Pattern’s uncertainty is defined and used to enhance GMR-Bootstrapping to learn multiple categories simultaneously. Experimental results on MUC4 corpus show that GMR-Bootstrapping outperforms the state-of-the-art algorithms. We also use it to extract names of automobile manufactures and models from Chinese corpus. It achieves good results too.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hirschman, L., Light, M., Breck, E., Burger, J.D.: Deep read: A reading comprehension system, University of Maryland, pp. 325–348 (1999)

    Google Scholar 

  2. Moldovan, D., Harabagiu, S., Pasca, M., Mihalcea, R., Goodrum, R., Girju, R., Rus, V.: Lasso: A tool for surfing the answer net. In: Proceedings of the Eighth Text REtrieval Conference (TREC-8) (1999)

    Google Scholar 

  3. Riloff, E., Schmelzenbach, M.: An empirical approach to conceptual case frame acquisition. In: Proceedings of the Sixth Workshop on Very Large Corpora (1998)

    Google Scholar 

  4. Roark, B., Charniak, E.: Noun-phrase co-occurence statistics for semi-automatic semantic lexicon construction. In: Proceedings of ACL 1998 (1998)

    Google Scholar 

  5. Skounakis, M., Craven, M., Ray, S.: Hierarchical hidden markov models for information extraction. In: Proceedings of the 18th International Joint Conference on Artificial Intelligence (2003)

    Google Scholar 

  6. Florian, R., Hassan, H., Ittycheriah, A., Jing, H., Kambhatla, N., Luo, X., Nicolov, N., Roukos, S.: A statistical model for multilingual entity detection and tracking. In: HLT-NAACL 2004: Main Proceedings, pp. 1–8 (2004)

    Google Scholar 

  7. Kambhatla, N.: Combining lexical, syntactic, and semantic features with maximum entropy models for information extraction. In: Proceedings of ACL 2004, pp. 178–181 (2004)

    Google Scholar 

  8. Collins, M., Singer, Y.: Unsupervised models for named entity classification. In: Proceedings of the Joint SIGDAT Conference on EMNLP/VLC (1999)

    Google Scholar 

  9. Riloff, E., Wiebe, J., Wilson, T.: Learning subjective nouns using extraction pattern bootstrapping. In: Proceedings of the Seventh Conference on Natural Language Learning (2003)

    Google Scholar 

  10. Thelen, M., Riloff, E.: A bootstrapping method for learning semantic lexicons using extraction pattern contexts. In: Proceedings of EMNLP 2002, Philadelphia (July 2002)

    Google Scholar 

  11. Widdows, D., Dorow, B.: A graph model for unsupervised lexical acquisition. In: Proceedings of COLING 2002 (2002)

    Google Scholar 

  12. Etzioni, O., Cafarella, M., Downey, D., Popescu, A.: Unsupervised named-entity extraction from the web: An experimental study. Artificial Intelligence 165(1), 91–134 (2005)

    Article  Google Scholar 

  13. Hassan, H., Hassan, A., Emam, O.: Unsupervised information extraction approach using graph mutual reinforcement. In: Proceedings of the EMNLP 2006, pp. 501–508 (2006)

    Google Scholar 

  14. Miller, G.: Wordnet: An on-line lexical database. International Journal of Lexicography (1990)

    Google Scholar 

  15. Dong, Z., Dong, Q.: HowNet (1999), http://www.HowNet.com

  16. MUC-4 Proceedings: Muc-4 proceedings. In: proceedings of the Fourth Message Understanding Conference (MUC-4) (1992)

    Google Scholar 

  17. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training. In: Proceedings of the 1998 Conference on Computational Learning Theory (July 1998)

    Google Scholar 

  18. Riloff, E., Jones, R.: Learning dictionaries for information extraction by multi-level bootstrapping. In: Proceedings of the 16th National Conference on Artificial Intelligence (1999)

    Google Scholar 

  19. Agichtein, E., Gravano, L.: Snowball: Extracting relations from large plain-text collections. In: Proceedings of the 5th ACM International Conference on Digital Libraries (July 2000)

    Google Scholar 

  20. Riloff, E., Shepherd, J.: A corpus-based ap- proach for building semantic lexicons. In: Proceedings of EMNLP 1997, pp. 117–124 (1997)

    Google Scholar 

  21. Riloff, E.: Automatically generating extraction patterns from untagged text. pattern bootstrapping. In: Proceedings of the Thirteenth National Conference on Artificial Intelligence (1996)

    Google Scholar 

  22. Kleinberg, J.: Authoritative sources in a hyperlinked environment. In: Proceedings of the 9th ACM-SIAM Symposium on Discrete Algorithms (1998)

    Google Scholar 

  23. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons, Inc., N.Y (1991)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hang Li Ting Liu Wei-Ying Ma Tetsuya Sakai Kam-Fai Wong Guodong Zhou

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhang, Q., Zhou, Y., Huang, X., Wu, L. (2008). Graph Mutual Reinforcement Based Bootstrapping. In: Li, H., Liu, T., Ma, WY., Sakai, T., Wong, KF., Zhou, G. (eds) Information Retrieval Technology. AIRS 2008. Lecture Notes in Computer Science, vol 4993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68636-1_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-68636-1_20

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68633-0

  • Online ISBN: 978-3-540-68636-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy