Skip to main content

Neural Network Model of Forward Shift of CA1 Place Fields Towards Reward Location

  • Conference paper
Neural Information Processing (ICONIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4984))

Included in the following conference series:

  • 1294 Accesses

Abstract

In a recent experimental paper I. Lee et al. [1] showed that the firing patterns of CA1 complex-spike neurons gradually shifted forward across trials toward prospective goal locations within a recording session over multiple trials. Here we propose a simple model of this result based on the phenomenon of awake sequence reverse replay [2] which occurs when the animal pauses at the reward location. The model is based on the CA3-CA1 anatomy with modulation of CA3-CA1 synaptic plasticity by feedback from CA3 projecting CA1 interneurons. Sequence replays, which are generated in CA3 by removal of septal inhibition on CA1 interneurons, are recoded into the synaptic weights of individual CA1 cells. This produces spatially extended CA1 firing fields, whose response provides a value function on experienced paths towards goal locations. Simulations show that the CA1 firing fields show positive movement in center of mass towards reward locations over many trials with negative shift in first few trials, and development of positive skew.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Lee, I., Griffin, A.L., Zilli, E.A., Eichenbaum, H., Hasselmo, M.E.: Gradual Translocation of Spatial Correlates of Neuronal Firing in the Hippocampus toward Prospective Reward Locations. Neuron 51, 639–650 (2006)

    Article  Google Scholar 

  2. Foster, D.A., Wilson, M.A.: Reverse replay of behavioural sequences in hippocampal place cells during the awake state. Nature 440(7084), 615–617 (2006)

    Article  Google Scholar 

  3. Eichenbaum, H.: A cortical-hippocampal system for declarative memory. Nat. Rev. Neurosci. 1, 41–50 (2000)

    Article  Google Scholar 

  4. McClelland, J.L.: Complementary learning systems in the brain. A connectionist approach to explicit and implicit cognition and memory. Ann. N Y Acad. Sci. 843, 153–169 (1998)

    Google Scholar 

  5. O’Keefe, J., Nadel, L.: The hippocampus as a cognitive map. Oxford University Press, Oxford (1978)

    Google Scholar 

  6. Anderson, M.I., Jeffery, K.J.: Heterogeneous modulation of place cell firing by changes in context. J. Neurosci. 23, 8827–8835 (2003)

    Google Scholar 

  7. Gothard, K.M., Skaggs, W.E., Moore, K.M., McNaughton, B.L.: Binding of hippocampal CA1 neural activity to multiple reference frames in a landmark-based navigation task. J. Neurosci. 16, 823–835 (1996)

    Google Scholar 

  8. Lee, I., Yoganarasimha, D., Rao, G., Knierim, J.J.: Comparison of population coherence of place cells in hippocampal subfields CA1 and CA3. Nature 430, 456–459 (2004)

    Article  Google Scholar 

  9. Leutgeb, S., Leutgeb, J.K., Treves, A., Moser, M.B., Moser, E.I.: Distinct ensemble codes in hippocampal areas CA3 and CA1. Science 305, 1295–1298 (2004)

    Article  Google Scholar 

  10. Breese, C.R., Hampson, R.E., Deadwyler, S.A.: Hippocampal place cells: stereotypy and plasticity. J. Neurosci. 9, 1097–1111 (1989)

    Google Scholar 

  11. Fyhn, M., Molden, S., Hollup, S., Moser, M.B., Moser, E.: Hippocampal neurons responding to first-time dislocation of a target object. Neuron 35, 555–566 (2002)

    Article  Google Scholar 

  12. Kobayashi, T., Nishijo, H., Fukuda, M., Bures, J., Ono, T.: J.Neurophysiol. 78, 597–613 (1997)

    Google Scholar 

  13. Markus, E.J., Qin, Y.L., Leonard, B., Skaggs, W.E., McNaughton, B.L., Barnes, C.A.: Interactions between location and task affect the spatial and directional firing of hippocampal neurons. J.Neurosci. 15, 7079–7094 (1995)

    Google Scholar 

  14. Bower, M.R., Euston, D.R., McNaughton, B.L.: Sequential- context-dependent hippocampal activity is not necessary to learn sequences with repeated elements. J. Neurosci. 25, 1313–1323 (2005)

    Article  Google Scholar 

  15. Ferbinteanu, J., Shapiro, M.L.: Prospective and retrospective memory coding in the hippocampus. Neuron 40(2003), 1227–1239 (2003)

    Article  Google Scholar 

  16. Wood, E.R., Dudchenko, P.A., Robitsek, R.J., Eichenbaum, H.: Hippocampal neurons encode information about different types of memory episodes occurring in the same location. Neuron 27, 623–633 (2000)

    Article  Google Scholar 

  17. Freund, T., Buzsaki, G.: Interneurons of the Hippocampus. Hippocampus 6, 347–470 (1996)

    Article  Google Scholar 

  18. Sik, A., Minen, A., Penttonen, M., Buzsaki, G.: Inhibitory CA1-CA3- hilar region feedback in the hippocampus. Science 265, 1722–1724 (1994)

    Article  Google Scholar 

  19. Somoyogi, P., Klausberger, T.: Defined types of cortical interneurone structure space and time in the Hippocampus. J.Physiol. 562.1, 9–26 (2005)

    Google Scholar 

  20. Foster, D.J., Wilson, M.A.: Hippocampal theta sequences Hippocampus (2007), DOI 10.1002/hipo.20345

    Google Scholar 

  21. Lisman, J.E.: Relating Hippocampal Circuitry to Function: Recall of Memory Sequences by Reciprocal Dentate-CA3 Interactions. Neuron 22, 233–242 (1999)

    Article  Google Scholar 

  22. Johnston, D., Amaral, D.G.: In: Shepard, G.M. (ed.) The Synaptic Organization of the Brain, Oxford University Press, Oxford (1998)

    Google Scholar 

  23. Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., Moser, E.I.: Microstructure of a spatial map in the entorhinal cortex. Nature 436, 801 (2005)

    Article  Google Scholar 

  24. Freund, T., Antal, M.: GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336, 170–173 (1998)

    Article  Google Scholar 

  25. Ponzi, A.: Dynamical System Model of Spatial Reward Learning. IEICE Technical Report 103, 163, 19–24 (2006)

    Google Scholar 

  26. Ponzi, A.: Model of Balance of Excitation and Inhibition in Hippocampal Sharp Wave Replays and Application to Spatial Remapping. In: Proceedings of IJCNN 2007 (2007)

    Google Scholar 

  27. Ponzi, A.: Simple Model of Hippocampal Splitter Cells. Japan Neural Network Society (JNNS) abstract (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Masumi Ishikawa Kenji Doya Hiroyuki Miyamoto Takeshi Yamakawa

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ponzi, A. (2008). Neural Network Model of Forward Shift of CA1 Place Fields Towards Reward Location. In: Ishikawa, M., Doya, K., Miyamoto, H., Yamakawa, T. (eds) Neural Information Processing. ICONIP 2007. Lecture Notes in Computer Science, vol 4984. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-69158-7_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-69158-7_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69154-9

  • Online ISBN: 978-3-540-69158-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy