Abstract
This paper deals with the problem of global stability for a class of neural networks with time-varying delays. A new sufficient condition for global stability is proposed by using some slack matrix variables to express the relationship between the system matrices. The restriction on the derivative of the delay function to be less than unit is removed. A numerical example shows that the result obtained in this paper improves the upper bound of the delay over some existing ones.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arik, S.: An analysis of global asymptotic stability of delayed cellular neural networks. IEEE Trans. Neural Networks 13, 1239–1242 (2002)
Arik, S.: Global robust stability of delayed neural networks. IEEE Trans. Circuits Syst. I. 50, 156–160 (2003)
Cao, J.: A set of stability criteria for delayed cellular neural networks. IEEE Trans. Circuits Syst. I. 48, 494–498 (2001)
Cao, J., Huang, D.S., Qu, Y.Z.: Global robust stability of delayed recurrent neural networks. Chaos, Solitons and Fractals 23, 221–229 (2005)
Chen, A., Cao, J., Huang, L.: An estimation of upperbound of delays for global asymptotic stability of delayed Hopfield neural networks. IEEE Tran. Circuit Syst. I. 49, 1028–1032 (2002)
Chu, T.G.: Necessary and sufficient condition for absolute stability of normal neural networks. Neural Networks 16, 1223–1227 (2003)
Chu, T.G.: A decomposition approach to analysis of competitive-cooperative neural networks with delay. Physics Letters A 312, 339–347 (2003)
Chu, T.G.: An exponential convergence estimate for analog neural networks with delay. Physics Letters A 283, 113–118 (2001)
He, Y., Wang, Q.G., Wu, M.: LMI-based stability criteria for neural networks with multiple time-varying delays. Physica D 212, 126–136 (2005)
Li, C.D., Liao, X.F., Zhang, R.: Global robust asymptotical stability of multi-delayed interval neural networks: an LMI approach. Physics Letters A 328, 452–462 (2004)
Liang, J.L., Cao, J.: A based-on LMI stability criterion for new criterion for delayed recurrent neural networks. Chaos, Solitons and Fractals 28, 154–160 (2006)
Liao, X.F., Wong, K.W., Wu, Z.F., Chen, G.: Novel robust stability criterion for interval-delayed Hopfield neural networks. IEEE Trans. Circuits Syst. I. 48, 1355–1359 (2001)
Liao, X.F., Chen, G., Sanchez, E.N.: Delay-dependent exponential stability analysis of delayed neural networks: an LMI approach. Neural Networks 15, 855–866 (2002)
Singh, V.: Robust stability of cellular neural networks with delay: linear matrix inequality approach. IEE Proc.-Control Theory Appl. 151, 125–129 (2004)
Singh, V.: Global robust stability of delayed neural networks: an LMI approach. IEEE Trans. Circuits Syst. II. 52, 33–36 (2005)
Xu, S., Lam, J., Ho, D.W.C., Zou, Y.: Novel global asymptotic stability criteria for delayed cellular neural networks. IEEE Tran. Circuit Syst. II. 52, 349–353 (2005)
Ye, H., Michel, A.N., Wang, K.: Global stability and local stability of Hopfield neural networks with delays. Physical Review E 59, 4206–4213 (1994)
Zuo, Z., Wang, Y.: Novel delay-dependent exponential stability analysis for a class of delayed neural networks. In: Huang, D.-S., Li, K., Irwin, G.W. (eds.) ICIC 2006. LNCS, vol. 4113, pp. 216–226. Springer, Heidelberg (2006)
Zhang, H., Li, C.G., Liao, X.F.: A note on the robust stability of neural networks with time delay. Chaos, Solitons and Fractals 25, 357–360 (2005)
Zhang, Q., Wei, X., Xu, J.: Global asymptotic stability of Hopfield neural networks with transmission delays. Physics Letters A 318, 399–405 (2003)
Yang, H.F., Chu, T., Zhang, C.: Exponential stability of neural networks with variable delays via LMI approach. Chaos, Solitons and Fractals 30, 133–139 (2006)
Zuo, Z.Q., Wang, Y.J.: Global asymptotic stability analysis for neural networks with time-varying delays. In: 45th IEEE Conference on Decision and Control, San Diego, USA (2006)
Boyd, S., El Ghaoui, L., Feron, E., Balakrishnan, V.: Linear matrix inequalities in systems and control theory. SIAM, Philadelphia (1994)
Zuo, Z.Q., Wang, Y.J.: Relaxed LMI condition for output feedback guaranteed cost control of uncertain discrete-time systems. Journal of Optimization Theory and Applications 127, 207–217 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Wang, Y., Zuo, Z. (2007). Global Stability of Neural Networks with Time-Varying Delays. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71629-7_79
Download citation
DOI: https://doi.org/10.1007/978-3-540-71629-7_79
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-71590-0
Online ISBN: 978-3-540-71629-7
eBook Packages: Computer ScienceComputer Science (R0)