Skip to main content

Augmenting BDI Agents with Deliberative Planning Techniques

  • Conference paper
Programming Multi-Agent Systems (ProMAS 2006)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4411))

Included in the following conference series:

Abstract

Belief-Desire-Intention (BDI) agents are well suited for autonomous applications in dynamic environments. Their precompiled plan schemata contain the procedural knowledge of an agent and contribute to the performance. The agents generally are constrained to a fixed set of action patterns. Their choice depends on current goals, not on the future of the environment. Planning techniques can provide dynamic plans regarding the predicted state of the environment. We augment a BDI framework with a state-based planner for operational planning in domains where BDI is not well applicable. For this purpose, the requirements for the planner and for the coupling with a BDI system are investigated. An approach is introduced where a BDI system takes responsibility for plan monitoring and re-planning and the planner for the creation of plans. A fast state-based planner utilizing domain specific control knowledge retains the responsiveness of the system. In order to facilitate integration with BDI systems programmed in object-oriented languages, the planning problem is adopted into the BDI conceptual space with object-based domain models. The application of the hybrid system is illustrated using a propositional puzzle and a multi agent coordination scenario.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Georgeff, M.P., Pell, B., Pollack, M., Tambe, M., Wooldrige, M.: The belief-desire-intention model of agency. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, pp. 1–10. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  2. Bratman, M.E.: Intention, Plans, and Practical Reason. Harvard University Press, Cambrige (1987)

    Google Scholar 

  3. De Silva, L., Padgham, L.: A comparison of BDI based real-time reasoning and HTN based planning. In: Webb, G.I., Yu, X. (eds.) AI 2004. LNCS (LNAI), vol. 3339, pp. 1167–1173. Springer, Heidelberg (2004)

    Google Scholar 

  4. Bratman, M.E., Israel, D.J., Pollack, M.E.: Plans and resource-bounded practical reasoning. Computational Intelligence 4, 349–355 (1988)

    Article  Google Scholar 

  5. Pokahr, A., Braubach, L., Lamersdorf, W.: A goal deliberation strategy for BDI agent systems. In: Eymann, T., Klügl, F., Lamersdorf, W., Klusch, M., Huhns, M.N. (eds.) MATES 2005. LNCS (LNAI), vol. 3550, Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  6. Shut, M., Wooldridge, M.: The control of reasoning in resource-bounded agents. The Knowledge Engineering Review 16(3) (2001)

    Google Scholar 

  7. Ghallab, M., Nau, D., Traverso, P.: Automated Planning: Theory and Practice. Morgan Kaufmann Publishers, San Francisco (2004)

    MATH  Google Scholar 

  8. Edelkamp, S., Hoffmann, J., Littman, M., Younes, H.: The 4th international planning competition 2004 (IPC-2004) Hosted at the International Conference on Automated Planning and Scheduling 2004 (ICAPS-2004) (2004)

    Google Scholar 

  9. Kvarnström, J., Magnusson, M.: TALplanner in IPC-2002: Extensions and control rules. Journal of Artificial Intelligence Research (JAIR) 20, 343–377 (2003)

    MATH  Google Scholar 

  10. Georgeff, M.P., Lansky, A.L.: Reactive reasoning and planning: An experiment with a mobile robot. In: Proceedings of the sixth National Conference on Artificial Intelligence (AAAI-87), Seattle, Washington, pp. 677–682 (1987)

    Google Scholar 

  11. Braubach, L., Pokahr, A., Moldt, D., Lamersdorf, W.: Goal representation for BDI agent systems. In: The Second International Workshop on Programming Multi Agent Systems, pp. 9–20 (2004)

    Google Scholar 

  12. Walczak, A.: Planning and the belief-desire-intention model of agency. Master’s thesis, University of Hamburg (2005)

    Google Scholar 

  13. Pokahr, A., Braubach, L., Lamersdorf, W.: Jadex: A BDI reasoning engine. In: Bordini, R., Dastani, M., Dix, J., Seghrouchni, A. (eds.) Multi-Agent Programming, Kluwer Academic Publishers, Dordrecht (2005)

    Google Scholar 

  14. Busetta, P., Ronnquist, R., Hodgson, A., Lucas, A.: JACK intelligent agent - components for intelligent agents in Java (1999)

    Google Scholar 

  15. FIPA: FIPA Contract Net Interaction Protocol Specification. FIPA (2001)

    Google Scholar 

  16. Fischer, K., Müller, J.P., Pischel, M.: Unifying control in a layered agent architecture. Technical Report TM-94-05, Deutsches Forschungszentrum für Künstliche Intelligenz GmbH, Kaiserslautern, DE (1994)

    Google Scholar 

  17. Despouys, O., Ingrand, F.F.: Propice-plan: Toward a unified framework for planning and execution. In: Biundo, S., Fox, M. (eds.) ECP 1999. LNCS, vol. 1809, pp. 278–293. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  18. Wilkins, D.E., Myers, K.L., Wesley, L.P.: Cypress: Planning and reacting under uncertainity. In: Burstein, M.H. (ed.) ARPA/Rome Laboratory Planning and Scheduling Initiative Workshop Proceedings, Morgan Kaufmann, San Mateo (1994)

    Google Scholar 

  19. De Silva, L., Padgham, L.: Planning on demand in BDI systems. In: International Conference on Automated Planning and Scheduling, Monterey, California (2005)

    Google Scholar 

  20. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, W., Wu, D., Yaman, F.: SHOP2: An HTN planning system. Journal of Artificial Intelligence Research 20, 379–404 (2003)

    MATH  Google Scholar 

  21. Fikes, R.E., Nilsson, N.J.: STRIPS: a new approach to the application of theorem proving to problem solving. Artificial Intelligence 2(3–4), 189–208 (1971)

    Article  MATH  Google Scholar 

  22. Meneguzzi, F.R., Zorzo, A.F., da Costa Móra, M.: Propositional planning in BDI agents. In: Proceedings of the 2004 ACM symposium on Applied computing, pp. 58–63. ACM Press, New York (2004)

    Chapter  Google Scholar 

  23. Móra, M.C., Lopes, J.G., Viccari, R.M., Coelho, H.: BDI models and systems: Reducing the gap. In: Rao, A.S., Singh, M.P., Müller, J.P. (eds.) ATAL 1998. LNCS (LNAI), vol. 1555, Springer, Heidelberg (1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Rafael H. Bordini Mehdi Dastani Jürgen Dix Amal El Fallah Seghrouchni

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Walczak, A., Braubach, L., Pokahr, A., Lamersdorf, W. (2007). Augmenting BDI Agents with Deliberative Planning Techniques. In: Bordini, R.H., Dastani, M., Dix, J., Seghrouchni, A.E.F. (eds) Programming Multi-Agent Systems. ProMAS 2006. Lecture Notes in Computer Science(), vol 4411. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-71956-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-71956-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-71955-7

  • Online ISBN: 978-3-540-71956-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy