Skip to main content

Detecting Biomarkers for Major Adverse Cardiac Events Using SVM with PLS Feature Selection and Extraction

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4492))

Included in the following conference series:

  • 1804 Accesses

Abstract

Detection of biomarkers capable of predicting a patient’s risk of major adverse cardiac events (MACE) is of clinical significance. Due to the high dynamic range of the protein concentration in human blood, applying proteomics techniques for protein profiling can generate large arrays of data for development of optimized clinical biomarker panels. The objective of this study is to discover an optimized subset of biomarkers for predicting risk of MACE containing less than ten biomarkers. In this paper, we connect linear SVM with PLS feature selection and extraction. A simplified PLS algorithm selects a subset of biomarkers and extracts latent variables and prediction performance of linear SVM is dramatically improved. The proposed method is compared with a widely used PLS-Logistic Discriminant solution and several other reported methods based on the MACE prediction experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Brennan, M.L., Penn, M.S., Lente, F.V., Nambi, V., Shishehbor, M.H., Aviles, R.J., Goormastic, M., Pepoy, M.L., McErlean, E.S., Topol, E.J., Nissen, S.E., Hazen, S.L.: Prognostic Value of Myeloperoxidase in Patients with Chest Pain. The New England J. Med. 349, 1595–1604 (2003)

    Article  Google Scholar 

  2. Zhou, X., Wang, H., Wang, J., Hoehn, G., Azok, J., Brennan, M.L., Hazen, S.L., Li, K., Wong, S.T.C.: Biomarker Discovery for Risk Stratification of Cardiovascular Events Using an Improved Genetic Algorithm. In: Proc. 2006 IEEE/NLM Int. Symposium on Life Science and Multimodality, Washington, D.C. (2006)

    Google Scholar 

  3. Morris, J.S., Coombes, K.R., Koomen, J., Baggerly, K.A., Kobayashi, R.: Feature Extraction and Quantification for Mass Spectrometry in Biomedical Applications Using the Mean Spectrum. Bioinformatics 21, 1764–1775 (2005)

    Article  Google Scholar 

  4. Tenenhaus, A., Giron, A., Saporta, G., Fertil, B.: Kernel Logistic PLS: A New Tool for Complex Classification. In: Proc. 2005 ASMDA Applied Stochastic models and Data Analysis, Brest, France (2005), http://asmda2005.enst-bretagne.fr/IMG/pdf/proceedings/441.pdf

  5. Rosipal, R., Trejo, L.J., Matthews, B.: Kernel PLS-SVC for Linear and Nonlinear Classification. In: Proc. 2003 ICML the Twentieth Int. Conf. on Machine Learning, Washington, D.C. (2003), http://www.ofai.at/~roman.rosipal/Papers/icml03.pdf

  6. Peng, H., Long, F., Ding, C.: Feature Selection Based on Mutual Information: Criteria of Max-Dependency, Max-Relevance, and Min-Redundancy. IEEE Trans. on Pattern Analysis and Machine Intelligence 27, 1226–1238 (2005)

    Article  Google Scholar 

  7. Nguyen, D., Rocke, D.: Tumor Classification by Partial Least Squares using Microbaray Gene Expression Data. Bioinformatics 18, 39–50 (2002)

    Article  Google Scholar 

  8. Wang, H.: Partial Least-Squares Regression-Method and Applications (in Chinese). National Defense Industry Press, Beijing (1999)

    Google Scholar 

  9. Boulesteix, A.-L.: PLS Dimension Reduction for Classification with Microarray Data. Statistical Applications in Genetics and Molecular Biology 3, Article 33, Epub (Nov. 23, 2004)

    Google Scholar 

  10. Dudoit, S., Shaffer, J.P., Boldrick, J.C.: Multiple Hypothesis Testing in Microarray Experiments. Statistical Science 18, 71–103 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ben-Dor, A., Bruhn, L., Friedman, N., Nachman, I., Schummer, M., Yakihini, Z.: Tissue Classification with Gene Expression Profiles. J. of Computational Biology 7, 559–584 (2000)

    Article  Google Scholar 

  12. Bo, T.H., Jonassen, I.: New Feature Subset Selection Procedures for Classification of Expression Profiles. Genome Biology 3, R17 (2002)

    Google Scholar 

  13. Wold, S.: Soft Modeling by Latent Variables; the Nonlinear Iterative Partial Least Squares Approch. In: Gani, J. (ed.) Perspectives in Probability and Statistics, Papers in Honour of M.S. Bartlett, pp. 520–540. Academic Press, London (1975)

    Google Scholar 

  14. Wold, S., Ruhe, H., Wold, H., Dunn III, W.J.: The Collinearity Problem in Linear Regression. The partial least squares (PLS) approach and Statistical Computations 5, 735–743 (1984)

    MATH  Google Scholar 

  15. Vapnik, V.N.: The Nature of Statistical Learning Theory. Springer, New York (1998)

    Google Scholar 

  16. Mao, Y., Zhou, X., Pi, D., Wong, S.T.C., Sun, Y.: Parameters Selection in Gene Selection Using Gaussian Kernel Support Vector Machines by Genetic Algorithm. J. of Zhejiang University SCIENCE B 6(10), 961–973 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Derong Liu Shumin Fei Zengguang Hou Huaguang Zhang Changyin Sun

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Yin, Z., Zhou, X., Wang, H., Sun, Y., Wong, S.T.C. (2007). Detecting Biomarkers for Major Adverse Cardiac Events Using SVM with PLS Feature Selection and Extraction. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72393-6_130

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72393-6_130

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72392-9

  • Online ISBN: 978-3-540-72393-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy