Abstract
To make interval-valued granular reasoning efficiently and optimize interval membership functions based on training data effectively, a new Genetic Granular Neural Network (GGNN) is desinged. Simulation results have shown that the GGNN is able to extract useful fuzzy knowledge effectively and efficiently from training data to have high training accuracy.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Karnik, N., Mendel, J.M.: Operations on Type-2 Fuzzy Sets. Fuzzy Sets and Systems 122, 327–348 (2001)
Fang, P.P., Zhang, Y.-Q.: Car Auxiliary Control System Using Type-2 Fuzzy Logic and Neural Networks. In: Proc. of WSC9, Sept. 20 - Oct. 8 (2004)
Jiang, F.H., Li, Z., Zhang, Y.-Q.: Hybrid Type-1-2 Fuzzy Systems for Surface Roughness Control. In: Proc. of WSC9, Sept. 20 - Oct. 8 ( (2004)
Lin, T.Y.: Granular Computing: Fuzzy Logic and Rough Sets. In: Zadeh, L., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems, pp. 184–200. Physica-Verlag, Heidelberg (1999)
Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Systems 7, 643–658 (1999)
Pedrycz, W.: Granular Computing: an Emerging Paradigm. Physica-Verlag, Heidelberg (2001)
Karnik, N.N., Mendel, J.M.: Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-series. Inf. Sci. 120, 89–111 (1999)
Tang, M.L., Zhang, Y.-Q., Zhang, G.: Type-2 Fuzzy Web Shopping Agents. In: Proc. of IEEE/WIC/ACM-WI2004, pp. 499–503 (2004)
Tang, Y.C., Zhang, Y.-Q.: Intelligent Type-2 Fuzzy Inference for Web Information Search Task. In: Soft Computing for Information Processing and Analysis. Studies in Fuzziness and Soft Computing, vol. 164, Springer, Heidelberg (2005)
Liang, Q., Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Trans. Fuzzy Systems 8, 535–550 (2000)
Mendel, J.M.: Computing Derivatives in Interval Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Systems 12, 84–98 (2004)
Wu, H., Mendel, J.M.: Uncertainty Bounds and Their Use in the Design of Interval Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Systems 10, 622–639 (2002)
Zadeh, L.A.: Fuzzy Sets and Information Granulation. In: Gupta, N., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Amsterdam (1979)
Zhang, Y.-Q., Fraser, M.D., Gagliano, R.A., Kandel, A.: Granular Neural Networks for Numerical-linguistic Data Fusion and Knowledge Discovery. IEEE Trans. Neural Networks (Special Issue on Neural Networks for Data Mining and Knowledge Discovery) 11(3), 658–667 (2000)
Zhang, Y.-Q.: Constructive Granular Systems with Universal Approximation and Fast Knowledge Discovery. IEEE Trans. Fuzzy Systems 13(1) (2005)
Qiu, Y., Zhang, Y.-Q., Zhao, Y.: Statistical Interval-Valued Fuzzy Systems via Linear Regression. In: Proc. of IEEE-GrC 2005, Beijing, July 25-27, 2005, pp. 229–232 (2005)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Zhang, YQ., Jin, B., Tang, Y. (2007). Genetic Granular Neural Networks. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72393-6_61
Download citation
DOI: https://doi.org/10.1007/978-3-540-72393-6_61
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72392-9
Online ISBN: 978-3-540-72393-6
eBook Packages: Computer ScienceComputer Science (R0)