Skip to main content

Genetic Granular Neural Networks

  • Conference paper
Advances in Neural Networks – ISNN 2007 (ISNN 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4492))

Included in the following conference series:

Abstract

To make interval-valued granular reasoning efficiently and optimize interval membership functions based on training data effectively, a new Genetic Granular Neural Network (GGNN) is desinged. Simulation results have shown that the GGNN is able to extract useful fuzzy knowledge effectively and efficiently from training data to have high training accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Karnik, N., Mendel, J.M.: Operations on Type-2 Fuzzy Sets. Fuzzy Sets and Systems 122, 327–348 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  2. Fang, P.P., Zhang, Y.-Q.: Car Auxiliary Control System Using Type-2 Fuzzy Logic and Neural Networks. In: Proc. of WSC9, Sept. 20 - Oct. 8 (2004)

    Google Scholar 

  3. Jiang, F.H., Li, Z., Zhang, Y.-Q.: Hybrid Type-1-2 Fuzzy Systems for Surface Roughness Control. In: Proc. of WSC9, Sept. 20 - Oct. 8 ( (2004)

    Google Scholar 

  4. Lin, T.Y.: Granular Computing: Fuzzy Logic and Rough Sets. In: Zadeh, L., Kacprzyk, J. (eds.) Computing with Words in Information/Intelligent Systems, pp. 184–200. Physica-Verlag, Heidelberg (1999)

    Google Scholar 

  5. Karnik, N.N., Mendel, J.M., Liang, Q.: Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Systems 7, 643–658 (1999)

    Article  Google Scholar 

  6. Pedrycz, W.: Granular Computing: an Emerging Paradigm. Physica-Verlag, Heidelberg (2001)

    MATH  Google Scholar 

  7. Karnik, N.N., Mendel, J.M.: Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-series. Inf. Sci. 120, 89–111 (1999)

    Article  MATH  Google Scholar 

  8. Tang, M.L., Zhang, Y.-Q., Zhang, G.: Type-2 Fuzzy Web Shopping Agents. In: Proc. of IEEE/WIC/ACM-WI2004, pp. 499–503 (2004)

    Google Scholar 

  9. Tang, Y.C., Zhang, Y.-Q.: Intelligent Type-2 Fuzzy Inference for Web Information Search Task. In: Soft Computing for Information Processing and Analysis. Studies in Fuzziness and Soft Computing, vol. 164, Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Liang, Q., Mendel, J.M.: Interval Type-2 Fuzzy Logic Systems: Theory and Design. IEEE Trans. Fuzzy Systems 8, 535–550 (2000)

    Article  Google Scholar 

  11. Mendel, J.M.: Computing Derivatives in Interval Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Systems 12, 84–98 (2004)

    Article  Google Scholar 

  12. Wu, H., Mendel, J.M.: Uncertainty Bounds and Their Use in the Design of Interval Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Systems 10, 622–639 (2002)

    Article  Google Scholar 

  13. Zadeh, L.A.: Fuzzy Sets and Information Granulation. In: Gupta, N., Ragade, R., Yager, R. (eds.) Advances in Fuzzy Set Theory and Applications, pp. 3–18. North-Holland, Amsterdam (1979)

    Google Scholar 

  14. Zhang, Y.-Q., Fraser, M.D., Gagliano, R.A., Kandel, A.: Granular Neural Networks for Numerical-linguistic Data Fusion and Knowledge Discovery. IEEE Trans. Neural Networks (Special Issue on Neural Networks for Data Mining and Knowledge Discovery) 11(3), 658–667 (2000)

    Article  Google Scholar 

  15. Zhang, Y.-Q.: Constructive Granular Systems with Universal Approximation and Fast Knowledge Discovery. IEEE Trans. Fuzzy Systems 13(1) (2005)

    Google Scholar 

  16. Qiu, Y., Zhang, Y.-Q., Zhao, Y.: Statistical Interval-Valued Fuzzy Systems via Linear Regression. In: Proc. of IEEE-GrC 2005, Beijing, July 25-27, 2005, pp. 229–232 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Derong Liu Shumin Fei Zengguang Hou Huaguang Zhang Changyin Sun

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Zhang, YQ., Jin, B., Tang, Y. (2007). Genetic Granular Neural Networks. In: Liu, D., Fei, S., Hou, Z., Zhang, H., Sun, C. (eds) Advances in Neural Networks – ISNN 2007. ISNN 2007. Lecture Notes in Computer Science, vol 4492. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72393-6_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-72393-6_61

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-72392-9

  • Online ISBN: 978-3-540-72393-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy