Abstract
This paper presents a new approach to blind separation of sources using sparse representation in an underdetermined mixture. Firstly, we transform the observations into the new ones within the generalized spherical coordinates, through which the estimation of the mixing matrix is formulated as the estimation of the cluster centers. Secondly, we identify the cluster centers by a new classification algorithm, whereby the mixing matrix is estimated. The simulation results have shown the efficacy of the proposed algorithm.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bofill, P., Zibulevsky, M.: Underdetermined Blind Source Separation Using Sparse Representation. Signal Processing 81(11), 2353–2362 (2001)
Yilmaz, O., Rickard, S.: Blind Separation of Speech Mixtures via Time-Frequency Masking. IEEE Transactions on Signal Processing 52(7), 1830–1847 (2004)
Li, Y., et al.: Underdetermined Blind Source Separation Based on Sparse Representation. IEEE Transactions on Signal Processing 54(22), 423–437 (2006)
Zibulevsky, M., Pearlmutter, B.A.: Blind Source Separation by Sparse Decomposition. Neural Computation 13(4), 863–882 (2001)
Abrard, F., Deville, Y.: A Time-Frequency Blind Signal Separation Method Applicable to Underdetermined Mixtures of Dependent Sources. Signal Processing 85(77), 1389–1403 (2005)
Vielva, L., et al.: Inversion techniques for underdetermined BSS in an arbitrary number of dimensions. In: Proc. 4th International Conference on Independent Component Analysis and Blind Source Separation (ICA’03), Nara, Japan, Apr. 2003, pp. 131–136 (2003)
Vielva, L., et al.: On the estimation of the mixing matrix for underdetermined blind source separation in an arbitrary number of dimensions. In: Puntonet, C.G., Prieto, A.G. (eds.) ICA 2004. LNCS, vol. 3195, pp. 185–192. Springer, Heidelberg (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Liu, HL., Hou, JX. (2007). A New Approach to Underdetermined Blind Source Separation Using Sparse Representation. In: Yao, J., Lingras, P., Wu, WZ., Szczuka, M., Cercone, N.J., Ślȩzak, D. (eds) Rough Sets and Knowledge Technology. RSKT 2007. Lecture Notes in Computer Science(), vol 4481. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72458-2_34
Download citation
DOI: https://doi.org/10.1007/978-3-540-72458-2_34
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72457-5
Online ISBN: 978-3-540-72458-2
eBook Packages: Computer ScienceComputer Science (R0)