Abstract
In power-limited Wireless Sensor Network (WSN), it is important to reduce the communication load in order to achieve energy savings. This paper applies a novel statistic method to estimate the parameters based on the real-time data measured by local sensors. Instead of transmitting large real-time data, we proposed to transmit the small amount of dynamic parameters by exploiting both temporal and spatial correlation within and between sensor clusters. The temporal correlation is built on the level-1 Bayesian model at each sensor to predict local readings. Each local sensor transmits their local parameters learned from historical measurement data to their cluster heads which account for the spatial correlation and summarize the regional parameters based on level-2 Bayesian model. Finally, the cluster heads transmit the regional parameters to the sink node. By utilizing this statistical method, the sink node can predict the sensor measurements within a specified period without directly communicating with local sensors. We show that this approach can dramatically reduce the amount of communication load in data query applications and achieve significant energy savings.
Chapter PDF
Similar content being viewed by others
References
Jain, A.E.Y., Wanf, Y.: Adaptive stream management using kalman filters. In: SIGMOD (2004)
Kotidis, Y.: Snapshot queries: towards data-centric sensor networks. In: Proc. Of the 21th Intl. Conf. on Data Engineering (April 2005)
Chu, D., Desphande, A., Hellerstein, J., Hong, W.: Approximate data collection in sensor networks using probabilistic models. In: ICDE (April 2006)
Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: An Application-Specific Protocol Architecture for Wireless Microsensor Networks. IEEE Transactions on Wireless Communications 1(4), 660–670 (2002)
Lin, C.R., Gerla, M.: Adaptive Clustering for Mobile Wireless Network. IEEE J. Select. Area Commun. 15, 1265–1275 (1997)
Ryu, J.H., Song, S., Cho, D.H.: Energy-Conserving Clustering Scheme for Multicasting in Two-tier Mobile Ad-Hoc Networks. Electron. Lett. 37, 1253–1255 (2001)
Hou, T.C., Tsai, T.J.: Distributed Clustering for Multimedia Support in Mobile Multihop Ad Hoc Network. IEICE Trans. Commun. E84B, 760–770 (2001)
Han, J., Kamber, M.: Data Mining: Concepts and Techniques. Academy Press, San Diego (2001)
Productive Patterns Software Web site, http://www.predictivepatterns.com/docs/WebSiteDocs/Clustering/Agglomerative_Hierarchical_Clustering_Overview.htm
SAS Institute Inc.: SAS/STAT userí»s guide, version 9.1. SAS Institute Inc., Cary, NC (2003)
Fang, H.: %hlmdata and %hlmrmpower: Traditional repeated measures vs. HLM for multilevel longitudinal data analysis - power and type I error rate comparison. In: Proceedings of the Thirty-First Annual SAS Users Group Conference, SAS Institute Inc., Cary, NC (2006)
Fang, H., Brooks, G.P., Rizzo, M.L., Barcikowski, R.S.: An empirical power analysis of multilevel linear model under three covariance structures in longitudinal data analysis. In: Proceedings of the Joint Statistical Meetings, American Statistical Association, Quality Industry and Technology Section [CD-ROM]. American Statistical Association, Seattle, Washington (2006)
Potthoff, R.F., Roy, S.N.: A generalized multivariate analysis of variance model useful especially for growth curve problems. Biometrika 51, 313–326 (1964)
Raudenbush, S.W., Bryk, A.S.: Hierarchical linear models: Applications and data analysis methods. Sage publications, Inc., London (2002)
McCulloch, C.E., Searle, S.R.: Generalized, linear, and mixed models. John Wiley & Sons, New York (2001)
Carlin, B.P., Louis, T.A.: Bayes and Empirical Bayes Methods for Data Analysis. Chapman & Hall/CRC, Boca Raton (2000)
Little, R.J., Rubin, D.B.: Statistical analysis with missing data, 2nd edn. John Wiley, New York (2002)
Ross, S.M.: Introduction to probability models. Academic Press, San Diego (2003)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer Berlin Heidelberg
About this paper
Cite this paper
Wang, H., Fang, H., Espy, K.A., Peng, D., Sharif, H. (2007). A Bayesian Multilevel Modeling Approach for Data Query in Wireless Sensor Networks. In: Shi, Y., van Albada, G.D., Dongarra, J., Sloot, P.M.A. (eds) Computational Science – ICCS 2007. ICCS 2007. Lecture Notes in Computer Science, vol 4489. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-72588-6_137
Download citation
DOI: https://doi.org/10.1007/978-3-540-72588-6_137
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-72587-9
Online ISBN: 978-3-540-72588-6
eBook Packages: Computer ScienceComputer Science (R0)