Skip to main content

From Logic to Physics: How the Meaning of Computation Changed over Time

  • Conference paper
Computation and Logic in the Real World (CiE 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4497))

Included in the following conference series:

Abstract

The common formulation of the Church-Turing thesis runs as follows:

Every computable partial function is computable by a Turing machine

Where by partial function I mean a function from a subset of natural numbers to natural numbers. As most textbooks relate, the thesis makes a connection between an intuitive notion (computable function) and a formal one (Turing machine). The claim is that the definition of a Turing machine captures the pre-analytic intuition that underlies the concept computation. Formulated in this way the Church-Turing thesis cannot be proved in the same sense that a mathematical proposition is provable. However, it can be refuted by an example of a function which is not Turing computable, but is nevertheless calculable by some procedure that is intuitively acceptable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Barrett, J.: Information processing in generalized probabilistic theories (2005), http://arxiv.org/quant-ph/0508211

  2. Beckman, D.E.: Investigations in quantum computing, causality and graph isomorphism PhD thesis, California Institute of Technology (2004)

    Google Scholar 

  3. Boolos, J.S., Jeffrey, C.J.: Computability and Logic. Cambridge University Press, Cambridge (1974)

    MATH  Google Scholar 

  4. Brassard, G., Buhrman, H., Linden, N., Methot, A.A., Tapp, A., Ungerquant, F.: A limit on nonlocality in any world in which communication complexity is not trivial (2005), http://arxiv.org/abs/quant-ph/0508042

  5. Buhrman, H., Cleve, R., Wigderson, A.: Quantum vs. Classical Communication and Computation (1998), http://arxiv.org/abs/quant-ph/9802040

  6. Clauser, J.F., Horne, M.A.: Experimental consequences of objective local theories. Physical Review D 10, 526–535 (1974)

    Article  Google Scholar 

  7. Cobham, A.: The intrinsic computational difficulty of a function. In: Bar-Hillel, Y. (ed.) Proc. 1964 International Congress for Logic, Methodology, and Philosophy of Science, North Holland, Amsterdam (1964)

    Google Scholar 

  8. Earman, J., Norton, J.D.: Forever is a Day: Supertasks in Pitowsky and Malament-Hogarth Spacetimes. Philosophy of Science 60, 22–42 (1993)

    Article  MathSciNet  Google Scholar 

  9. Edmonds, J.: Paths trees and flowers. Canadian Journal of Mathematics 17, 449–467 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ekert, A.: Quantum cryptography based on Bell’ s theorem. Physical Review Letters 67, 661–664 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  11. Enderton, H.B.: Elements of recursion theory. In: Barwise, J. (ed.) Handbook of Mathematical Logic North Holland, Amsterdam, pp. 527–566

    Google Scholar 

  12. Gandy, R.O.: Church’s Thesis and Principles of Mechanisms. In: Barwise, J., Keisler, J.J., Kunen, K. (eds.) The Kleene Symposium, pp. 123–145. North Holland, Amsterdam (1980)

    Chapter  Google Scholar 

  13. Gisin, N., Methot, A.A., Scarani, V.: Pseudo-telepathy: input cardinality and Bell-type inequalities (2006), http://arxiv.org/quant-ph/0610175

  14. Grover, L.K.: Quantum Mechanics helps in searching for a needle in a haystack. Physical Reveiw Letters 78, 325–328 (1997)

    Article  Google Scholar 

  15. Hagar, A., Korolev, A.: Quantum hypercomputability? Minds and Machines 16, 87–93 (2006)

    Article  Google Scholar 

  16. Hogarth, M.L.: Non-Turing Computers and Non-Turing Computability. Proceedings of the Philosophy of Science Association (PSA) 1, 126–138 (1994)

    Google Scholar 

  17. Jozsa, R., Linden, N.: On the role of entanglement in quantum computational speed-up. Proceedings of the Royal Society of London A 459, 2011–2032 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kieu, T.D.: An Anatomy of a Quantum Adiabatic Algorithm that Transcends the Turing Computability. International Journal of Quantum Information 3, 177–183 (2005)

    Article  Google Scholar 

  19. Penrose, R.: Gravitational collapse. In: De Witt-Morette, C. (ed.) Gravitational Radiation and Gravitational Collapse, pp. 82–91. Reidel, Dordrecht (1974)

    Google Scholar 

  20. Pitowsky, I.: Quantum Probability, Quantum Logic. Lecture Notes in Physics, vol. 321. Springer, Heidelberg (1989)

    MATH  Google Scholar 

  21. Pitowsky, I.: The Physical Church Thesis and Physical Computational Complexity, Iyun vol. 39, pp. 161–180 (1990)

    Google Scholar 

  22. Popescu, S., Rohrlich, D.: Action and Passion at a Distance: An Essay in Honor of Professor Abner Shimony (1996), http://arxiv.org/abs/quant-ph/9605004

  23. Shagrir, O.: Computations by Humans and Machines. Minds and Machines 12, 221–240 (2002)

    Article  MATH  Google Scholar 

  24. Shagrir, O., Pitowsky, I.: The Church-Turing Thesis and Hypercomputation. Minds and Machines 13, 87–101 (2003)

    Article  MATH  Google Scholar 

  25. Shor, P.W.: Polynomial Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer. SIAM Journal of Computing 26, 1484–1509 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Sieg, W., Byrnes, J.: An Abstract Model for Parallel Computations: Gandy’s Thesis. The Monist 82, 150–164 (1999)

    Article  Google Scholar 

  27. Tsirelson, B.S.: Quantum generalizations of Bell’s inequality. Letters in Mathematical Physics 4, 93–100 (1980)

    Article  MathSciNet  Google Scholar 

  28. Turing, A.M.: On Computable Numbers with an application to the Entscheidungsproblem. Proceedings of the London Mathematical Society 45(2), 115–154 (1936)

    MathSciNet  MATH  Google Scholar 

  29. van Dam, W.: Implausible Consequences of Superstrong Nonlocality (2005), http://arxiv.org/abs/quant-ph/0501159

  30. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Physical Review A 40, 4277–4281 (1989)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Pitowsky, I. (2007). From Logic to Physics: How the Meaning of Computation Changed over Time. In: Cooper, S.B., Löwe, B., Sorbi, A. (eds) Computation and Logic in the Real World. CiE 2007. Lecture Notes in Computer Science, vol 4497. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73001-9_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73001-9_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73000-2

  • Online ISBN: 978-3-540-73001-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy