Skip to main content

Non-linear Robust Identification: Application to a Thermal Process

  • Conference paper
Bio-inspired Modeling of Cognitive Tasks (IWINAC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4527))

  • 1068 Accesses

Abstract

In this article, a methodology to obtain the Feasible Parameter Set (FPS) and a nominal model in a non-linear robust identification problem is presented. Several norms are taken into account simultaneously to define the FPS which improves the model quality but, as counterpart, it increases the optimization problem complexity. To determine the FPS a multimodal optimization problem with an infinite number of minima, which constitute the FPS, is presented and a special evolutionary algorithm (ε−GA) is used to characterize it. Finally, an application to a thermal process identification, where ||·|| ∞  and ||·||1 norms have been considered simultaneously, is presented to illustrate the technique.

Partially supported by MEC (Spanish government) and FEDER funds: projects DPI2005-07835, DPI2004-8383-C03-02 and GVA-026.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Belforte, G., Bona, B., Cerone, V.: Parameter estimation algoritms for a set-membership description of uncertainty. Automatica 26(5), 887–898 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  2. Chisci, L., Garulli, A., Vicino, A., Zappa, G.: Block recursive parallelotopic bounding in set membership identification. Automatica 34(1), 15–22 (1988)

    Article  MathSciNet  Google Scholar 

  3. Fogel, E., Huang, F.: On the value of information in system identification-bounded noise case. Automatica 12(12), 229–238 (1982)

    Article  MathSciNet  Google Scholar 

  4. Herrero, J.M.: Non-linear robust identification using evolutionary algorithms. PhD. Thesis. Polytechnic University of Valencia, Spain (2006)

    Google Scholar 

  5. Keesman, K.J., Stappers, R.: Nonlinear set-membership estimation: A support vector machine approach. J. Inv. Ill-Posed Problems 12(1), 27–41 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ljung, L.: System identification, theory for the user, 2nd edn. Prentice-Hall, Englewood Cliffs (1999)

    Google Scholar 

  7. Reinelt, W., Garulli, A., Ljung, L.: Comparing different approaches to model error modelling in robust identification. Automatica 38(5), 787–803 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Walter, E., Piet-Lahanier, H.: Estimation of parameter bounds from bounded-error data: A survey. Mathematics and computers in Simulation 32, 449–468 (1990)

    Article  MathSciNet  Google Scholar 

  9. Walter, E., Kieffer, M.: Interval analysis for guaranteed nonlinear parameter estimation. In: Proc. of the 13th IFAC Symposium on System Identification (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

José Mira José R. Álvarez

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer Berlin Heidelberg

About this paper

Cite this paper

Herrero, J.M., Blasco, X., Martínez, M., Salcedo, J.V. (2007). Non-linear Robust Identification: Application to a Thermal Process. In: Mira, J., Álvarez, J.R. (eds) Bio-inspired Modeling of Cognitive Tasks. IWINAC 2007. Lecture Notes in Computer Science, vol 4527. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73053-8_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73053-8_46

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73052-1

  • Online ISBN: 978-3-540-73053-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy