Skip to main content

Identification of Distinguishing Motifs

  • Conference paper
Combinatorial Pattern Matching (CPM 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4580))

Included in the following conference series:

Abstract

Motivation: Motif identification for sequences has many important applications in biological studies, e.g., diagnostic probe design, locating binding sites and regulatory signals, and potential drug target identification. There are two versions.

  1. 1

    Single Group: Given a group of n sequences, find a length-l motif that appears in each of the given sequences and those occurrences of the motif are similar.

  2. 1

    Two Groups: Given two groups of sequences B and G, find a length-l (distinguishing) motif that appears in every sequence in B and does not appear in anywhere of the sequences in G.

Here the occurrences of the motif in the given sequences have errors. Currently, most of existing programs can only handle the case of single group. Moreover, it is very difficult to use edit distance (allowing indels and replacements) for motif detection.

Results: (1) We propose a randomized algorithm for the one group problem that can handle indels in the occurrences of the motif. (2) We give an algorithm for the two groups problem. (3) Extensive simulations have been done to evaluate the algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bailey, T., Elkan, C.: Fitting a mixture model by expectation maximization to discover motifs in biopolymers. In: Proceedings of the Second International Conference on Intelligent Systems for Molecular Biology (ISMB-1994), pp. 28–36. AAAI Press, Menlo PArk (1994)

    Google Scholar 

  2. Bailey, T., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers using expectation maximization. Machine Learning 21, 51–80 (1995)

    Google Scholar 

  3. Buhler, J., Tompa, M.: Finding motifs using random projections. Journal of Computational Biology 9, 225–242 (2002)

    Article  Google Scholar 

  4. Cardon, L.R., Stormo, G.D.: Expectation maximization algorithm for identifying protein-binding sites with variable lengths from unaligned DNA fragments. J. Mol. Biol. 223, 159–170 (1992)

    Article  Google Scholar 

  5. Deng, X., Li, G., Li, Z., Ma, B., Wang, L.: Generic Drug Design without Side Effect. SIAM J on Computing 32(4), 1073–1090 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  6. Dopazo, J., Rodríguez, A., Sáiz, J.C., Sobrino, F.: Design of primers for PCR amplification of highly variable genomes. CABIOS 9, 123–125 (1993)

    Google Scholar 

  7. Gusfield, D.: Algorithms on Strings, Trees, and Sequences: Computer Science and Computational Biology. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  8. Hertz, G., Stormo, G.: Identification of consensus patterns in unaligned DNA and protein sequences: a large-deviation statistical basis for penalizing gaps. In: Proc. 3rd Intl Conf. Bioinformatics and Genome Research, pp. 201–216 (1995)

    Google Scholar 

  9. Hu, Y.-J.H: Finding subtle motifs with variable gaps in unaligned DNA sequences. Computer Methods and Programs in Biomedicine 70, 11–20 (2003)

    Article  Google Scholar 

  10. Keich, U., Pevzner, P.: Finding motifs in the twilight zone. Bioinformatics 18, 1374–1381 (2002a)

    Article  Google Scholar 

  11. Keich, U., Pevzner, P.: Subtle motifs: defining the limits of motif finding algorithms. Bioinformatics 18, 1382–1390 (2002b)

    Article  Google Scholar 

  12. Lanctot, K., Li, M., Ma, B., Wang, S., Zhang, L.: Distinguishing string selection problems. In: Proc. 10th ACM-SIAM Symp. on Discrete Algorithms, pp. 633–642 (Also to appear in Information and Computation)

    Google Scholar 

  13. Lawrence, C., Reilly, A.: An expectation maximization (EM) algorithm for the identification and characterization of common sites in unaligned biopolymer sequences. Proteins 7, 41–51 (1990)

    Article  Google Scholar 

  14. Li, M., Ma, B., Wang, L.: Finding Similar Regions in Many Strings. In: Proceedings of the Thirty-first Annual ACM Symposium on Theory of Computing, Atlanta, pp. 473–482 (1999)

    Google Scholar 

  15. Li, M., Ma, B., Wang, L.: Finding Similar Regions in Many Sequences (special issue for Thirty-first Annual ACM Symposium on Theory of Computing). J. Comput. Syst. Sci. 65, 73–96 (2002a)

    Article  MathSciNet  Google Scholar 

  16. Li, M., Ma, B., Wang, L.: On the closest string and substring problems. JACM 49(2), 157–171 (2002b)

    Article  MathSciNet  Google Scholar 

  17. Lucas, K., Busch, M., Mössinger, S., Thompson, J.A.: An improved microcomputer program for finding gene- or gene family-specific oligonucleotides suitable as primers for polymerase chain reactions or as probes. CABIOS 7, 525–529 (1991)

    Google Scholar 

  18. Pevzner, P., Sze, S.: Combinatorial approaches to finding subtle signals in DNA sequences. In: Proceedings of the 8th International Conference on Intelligent Systems for Molecular Biology. pp. 269–278 (2000)

    Google Scholar 

  19. Proutski, V., Holme, E.C.: Primer Master: a new program for the design and analysis of PCR primers. CABIOS 12, 253–255 (1996)

    Google Scholar 

  20. Stormo, G.: Consensus patterns in DNA. In: Doolittle, R.F.(ed.) Molecular evolution: computer analysis of protein and nucleic acid sequences, Methods in Enzymology, vol. 183, pp. 211–221 (1990)

    Google Scholar 

  21. Price, A., Ramabhadran, S., Pevzner, P.: Finding Subtle Motifs by Branching from Sample Strings, Bioinformatics 19, 149–155 (2003)

    Article  Google Scholar 

  22. Keller, G.H., Manak, M.M.: DNA Probes, Stockton Press, p. 12 (1989)

    Google Scholar 

  23. McPearson, M.J., Quirke, M.J., Taylor, G.R: PCR A Practical Approach, p. 8. Oxford University Press, New York (1991)

    Google Scholar 

  24. Wang, L., Dong, L., Fan, H.: Randomized Algorithms for Motif Detection. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 884–895. Springer, Heidelberg (2004)

    Google Scholar 

  25. Waterman, M., Arratia, R., Galas, E.: Pattern recognition in several sequences:consenus and alignment. Bull. Math. Biol. 46, 515–527 (1984)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bin Ma Kaizhong Zhang

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Feng, W., Wang, Z., Wang, L. (2007). Identification of Distinguishing Motifs. In: Ma, B., Zhang, K. (eds) Combinatorial Pattern Matching. CPM 2007. Lecture Notes in Computer Science, vol 4580. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73437-6_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73437-6_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73436-9

  • Online ISBN: 978-3-540-73437-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy