Skip to main content

Optimal Algorithmic Cooling of Spins

  • Conference paper
Unconventional Computation (UC 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4618))

Included in the following conference series:

Abstract

Algorithmic Cooling (AC) of Spins is potentially the first near-future application of quantum computing devices. Straightforward quantum algorithms combined with novel entropy manipulations can result in a method to improve the identification of molecules.

We introduce here several new exhaustive cooling algorithms, such as the Tribonacci and k-bonacci algorithms. In particular, we present the “all-bonacci” algorithm, which appears to reach the maximal degree of cooling obtainable by the optimal AC approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boykin, P.O., Mor, T., Roychowdhury, V., Vatan, F., Vrijen, R.: Algorithmic cooling and scalable NMR quantum computers. Proc. Natl. Acad. Sci. 99(6), 3388–3393 (2002)

    Article  MATH  Google Scholar 

  2. Fernandez, J.M., Lloyd, S., Mor, T., Rowchoudury, V.: Algorithmic cooling of spins: A practicable method for increasing polarisation. Int. J. Quant. Inf. 2(4), 461–467 (2004)

    Article  Google Scholar 

  3. Mor, T., Roychowdhury, V., Lloyd, S., Fernandez, J.M., Weinstein, Y.: US patent No. 6,873,154 (2005)

    Google Scholar 

  4. Cover, T.M., Thomas, J.A.: Elements of Information Theory. Wiley, New York (1991)

    MATH  Google Scholar 

  5. Brassard, G., Elias, Y., Fernandez, J.M., Gilboa, H., Jones, J.A., Mor, T., Weinstein, Y., Xiao, L.: Experimental heat-bath cooling of spins. Proc. Natl. Acad. Sci. USA (submitted) (also in arXiv:quant-ph/0511156)

    Google Scholar 

  6. Morris, G.A., Freeman, R.: Enhancement of nuclear magnetic resonance signals by polarization transfer. J. Am. Chem. Soc. 101, 760–762 (1979)

    Article  Google Scholar 

  7. Sørensen, O.W.: Polarization transfer experiments in high-resolution NMR spectroscopy. Prog. Nucl. Mag. Res. Spec. 21, 503–569 (1989)

    Article  Google Scholar 

  8. Schulman, L.J., Vazirani, U.V.: Scalable NMR quantum computation. In: Proceedings of ACM Symposium on the Theory of Computing (STOC), pp. 322–329. ACM Press, New York (1999)

    Google Scholar 

  9. Farrar, C.T., Hall, D.A., Gerfen, G.J., Inati, S.J., Griffin, R.G.: Mechanism of dynamic nuclear polarization in high magnetic fields. J. Chem. Phys. 114, 4922–4933 (2001)

    Article  Google Scholar 

  10. Slichter, C.P.: Principles of Magnetic Resonance, 3rd edn. Springer, Heidelberg (1990)

    Google Scholar 

  11. Ardenkjær-Larsen, J.H., Fridlund, B., Gram, A., Hansson, G., Hansson, L., Lerche, M.H., Servin, R., Thaning, M., Golman, K.: Increase in signal-to-noise ratio of > 10,000 times in liquid-state NMR. Proc. Natl. Acad. Sci. 100, 10158–10163 (2003)

    Article  Google Scholar 

  12. Anwar, M., Blazina, D., Carteret, H., Duckett, S.B., Halstead, T., Jones, J.A., Kozak, C., Taylor, R.: Preparing high purity initial states for nuclear magnetic resonance quantum computing. Phys. Rev. Lett. 93 (2004) (also in arXiv:quant-ph/0312014)

    Google Scholar 

  13. Oros, A.M., Shah, N.J.: Hyperpolarized xenon in NMR and MRI. Phys. Med. Biol. 49, R105–R153 (2004)

    Article  Google Scholar 

  14. Emsley, L., Pines, A.: Lectures on pulsed NMR. In: Nuclear Magnetic Double Resonance, Proceedings of the CXXIII School of Physics “Enrico Fermi”, 2nd edn., p. 216. World Scientific, Amsterdam (1993)

    Google Scholar 

  15. Elias, Y., Fernandez, J.M., Mor, T., Weinstein, Y.: Algorithmic cooling of spins. Isr. J. Chem. (to be published on 2007)

    Google Scholar 

  16. Fernandez, J.M.: De computatione quantica. PhD thesis, University of Montreal, Canada (2003)

    Google Scholar 

  17. Weinstein, Y.: Quantum computation and algorithmic cooling by nuclear magnetic resonance. Master’s thesis, Physics Department, Technion - Israel Institute of Technology (August 2003)

    Google Scholar 

  18. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic cooling. SIAM J. Comp. 36, 1729–1747 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schulman, L.J., Mor, T., Weinstein, Y.: Physical limits of heat-bath algorithmic cooling. Phys. Rev. Lett. 94, 120501 (2005)

    Article  Google Scholar 

  20. Cory, D.G., Fahmy, A.F., Havel, T.F.: Nuclear magnetic resonance spectroscopy: an experimentally accessible paradigm for quantum computing. In: Proceedings of PhysComp96, pp. 87–91 (1996)

    Google Scholar 

  21. Cory, D.G., Fahmy, A.F., Havel, T.F.: Ensemble quantum computing by nuclear magnetic resonance spectroscopy. Proc. Natl. Acad. Sci. 1634–1639 (1997)

    Google Scholar 

  22. Gershenfeld, N.A., Chuang, I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    Article  MathSciNet  Google Scholar 

  23. Price, M.D., Havel, T.F., Cory, D.G.: Multiqubit logic gates in NMR quantum computing. New Journal of Physics 2, 10.1–10.9 (2000)

    Article  Google Scholar 

  24. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comp. 26(5), 1484–1509 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  25. Vandersypen, L.M.K., Steffen, M., Breyta, G., Yannoni, C.S., Sherwood, M.H., Chuang, I.L.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883–887 (2001)

    Article  Google Scholar 

  26. Warren, W.S.: The usefulness of NMR quantum computing. Science 277, 1688–1690 (1997)

    Article  Google Scholar 

  27. DiVincenzo, D.P.: Real and realistic quantum computers. Nature 393, 113–114 (1998)

    Article  Google Scholar 

  28. Twamley, J.: Quantum-cellular-automaton quantum computing with endohedal fullerenes. Phys. Rev. A 67, 052318 (2003)

    Article  Google Scholar 

  29. Freegarde, T., Segal, D.: Algorithmic cooling in a momentum state quantum computer. Phys. Rev. Lett. 91, 037904 (2003)

    Article  Google Scholar 

  30. Ladd, T.D., Goldman, J.R., Yamaguchi, F., Yamamoto, Y., Abe, E., Itoh, K.M.: All-silicon quantum computer. Phys. Rev. Lett. 89, 017901 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Selim G. Akl Cristian S. Calude Michael J. Dinneen Grzegorz Rozenberg H. Todd Wareham

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Elias, Y., Fernandez, J.M., Mor, T., Weinstein, Y. (2007). Optimal Algorithmic Cooling of Spins. In: Akl, S.G., Calude, C.S., Dinneen, M.J., Rozenberg, G., Wareham, H.T. (eds) Unconventional Computation. UC 2007. Lecture Notes in Computer Science, vol 4618. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73554-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73554-0_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73553-3

  • Online ISBN: 978-3-540-73554-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy