Abstract
In this conceptual paper, we report on studies and initial definitions of an immune-inspired approach to temporal anomaly detection problems, where there is a strict temporal ordering on the data, such as intrusion detection and fault detection. The inspiration for the development of this approach comes from the sophisticated mechanisms involved in T-cell based recognition, such as tuning of activation thresholds, receptor down-regulation, among others. Despite relying on low affinity and highly degenerate interactions, the recognition of foreign patterns by T cells is both highly sensitive and specific. Through a proper understanding of some of these mechanisms, this work aims at developing an efficient computational model using some of these concepts.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
de Castro, L.N., Timmis, J.: Artificial Immune Systems: A New Computational Intelligence Approach, 1st edn. Springer, London (2002)
Markou, M., Singh, S.: Novelty detection: a review - part 1: statistical approaches. Signal Process 83(12), 2481–2497 (2003)
Markou, M., Singh, S.: Novelty detection: a review - part 2: neural network based approaches. Signal Process 83(12), 2499–2521 (2003)
Kim, J., Bentley, P.J., Aickelin, U., Greensmith, J., Tedesco, G., Twycross, J.: Immune system approaches to intrusion detection - a review. Nat. Comput., pp. XX–XX (in press, 2007), doi: 10.1007 /s11047-006-9026-4 XX
Dasgupta, D., Yu, S., Majumdar, N.S.: MILA - multilevel immune learning algorithm and its application to anomaly detection. Soft Comput. 9, 172–184 (2005)
Grossman, Z., Paul, W.E.: Adaptive cellular interactions in the immune system: The tunable activation threshold and the significance of subthreshold responses. PNAS 89, 10365–10369 (1992)
Grossman, Z., Singer, A.: Tuning of activation thresholds explains flexibility in the selection and development of T cells in the thymus. PNAS 93, 14747–14752 (1996)
Grossman, Z., Paul, W.E.: Self-tolerance: context dependent tuning of T cell antigen recognition. Semin. Immunol. 12, 197–203 (2000)
Grossman, Z., Paul, W.E.: Autoreactivity, dynamic tuning and selectivity. Curr. Opin. Immunol. 13, 687–698 (2001)
Janeway, C.A., Travers, P., Walport, M., Shlonmchik, M.: Immunobiology: the immune system in health and disease, 5th edn. Garland Publishing, Inc., New York, USA (2002)
Germain, R.N., Stefanova, I.: The dynamics of T cell receptor signalling: Complex orchestration and the key roles of tempo and cooperation. Annu. Rev. Immunol. 17, 467–522 (1999)
Starr, T.K., Jameson, S.C., Hogquist, K.A.: Positive and negative selection of T cells. Annu. Rev. Immunol. 21, 139–176 (2003)
Depoil, D., Zaru, R., Guiraud, M., Chauveau, A., Harriague, J., Bismuth, G., Utzny, C., Müller, S., Valitutti, S.: Immunological synapses are versatile structures enabling selective T cell polarization. Immunity 22(2), 185–194 (2005)
Rachmilewitz, J., Lanzavecchia, A.: A temporal and spatial summation model for T-cell activation: signal integration and antigen decoding. Trends Immunol. 23(12), 592–595 (2002)
Friedl, P., Gunzer, M.: Interaction of T cells with APCs: the serial encounter model. Trends Immunol. 22(4), 187–191 (2001)
George, A.J.T., Stark, J., Chan, C.: Understanding specificity and sensitivity of T-cell recognition. Trends Immunol. 26(12), 653–659 (2005)
Davis, M.M., Krogsgaard, M., Huse, M., Huppa, J., Lillemeier, B.F., Li, Q.: T cells as a self-referential, sensory organ. Annu. Rev. Immunol. 25, 681–695 (2007)
Krogsgaard, M., Davis, M.M.: How T cells ’see’ antigen. Nat. Immunol. 6, 239–245 (2005)
Valitutti, S., Müller, S., Cella, M., Padovan, E., Lanzavecchia, A.: Serial triggering of many T-cell receptors by a few peptide-MHC complexes. Nature 375, 148–151 (1995)
McKeithan, T.W.: Kinetic proofreading in T-cell receptor signal transduction. PNAS 92(11), 5042–5046 (1995)
van den Berg, H.A., Burroughs, N.J., Rand, D.A.: Quantifying the strength of ligand antagonism in TCR triggering. B Math. Biol. 64, 781–808 (2002)
Goldstein, B., Faeder, J.R., Hlavacek, W.S.: Mathematical and computational models of immune-receptor signalling. Nat. Rev. Immunol. 4, 445–456 (2004)
Burroughs, N.J., van der Merwe, P.A.: Stochasticity and spatial heterogeneity in T-cell activation. Immunol Rev. 216, 69–80 (2007)
van den Berg, H.A., Rand, D.A.: Quantitative theories of T-cell responsiveness. Immunol. Rev. 216, 81–92 (2007)
Noest, A.J.: Designing lymphocyte functional structure for optimal signal detection: Voilà , T cells. J. theor. Biol. 207, 195–216 (2000)
van den Berg, H.A., Rand, D.A., Burroughs, N.J.: A reliable and safe T cell repertoire based on low-affinity T cell receptors. J. theor. Biol. 209(4), 465–486 (2001)
van den Berg, H.A., Rand, D.A.: Antigen presentation on MHC molecules as a diversity filter that enhances immune efficacy. J theor. Biol. 224, 249–267 (2003)
Sousa, J.: Modeling the antigen and cytokine receptors signalling processes and their propagation to lymphocyte population dynamics. PhD thesis, Universidade de Lisboa (2003)
Stefanova, I., Dorfman, J.R., Germain, R.N.: Self-recognition promotes the foreign antigen sensitivity of naive T lymphocytes. Nature 420, 429–434 (2002)
Stetter, M.: Dynamic functional tuning of nonlinear cortical networks. Phys. Rev. EÂ 73(3 Pt 1), 31903 (2006)
Carneiro, J., Paixão, T., Milutinovic, D., Sousa, J., Leon, K., Gardner, R., Faro, J.: Immunological self-tolerance: Lessons from mathematical modelin. J Comp. Appl. Math. 184(1), 77–100 (2005)
van den Berg, H.A., Rand, D.A.: Dynamics of T cell activation threshold tuning. J. theor. Biol. 228, 397–416 (2004)
Matzinger, P.: Tolerance, danger and the extended family. Annu. Rev. Immunol. 12, 991–1045 (1994)
Scherer, A., Noest, A., de Boer, R.J.: Activation-threshold tuning in an affinity model for the T-cell repertoire. Proc. R Soc. Lond. B 271, 609–616 (2004)
Garrett, S.M.: How do we evaluate artificial immune systems? Evol. Comput. 13(2), 145–178 (2005)
Dasgupta, D.: Advances in artificial immune systems. IEEE Comp. Int. Mag. 1(4), 40–49 (2006)
Freitas, A.A., Timmis, J.: Revisiting the foundations of artificial immune systems for data mining. IEEE Trans. Evol. Comput. (in press), doi: 10.1109 /TEVC.2006.884042 XXX (2006) XXX
Hofmeyr, S.A., Forrest, S.: Immunity by design: An artificial immune system. In: Proc. of the GECCO, vol. 2, pp. 1289–1296. Morgan Kaufmann, San Francisco (1999)
Alves, R.T., Delgado, M.R., Lopes, H.S., Freitas, A.A.: An artificial immune system for fuzzy-rule induction in data mining. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) Parallel Problem Solving from Nature - PPSN VIII. LNCS, vol. 3242, pp. 1011–1020. Springer, Heidelberg (2004)
Watkins, A., Timmis, J., Boggess, L.: Artificial immune recognition system (AIRS): An immune-inspired supervised learning algorithm. Genetic Prog. and Evol. Mach. 5(3), 291–317 (2004)
Timmis, J., Neal, M.: A resource limited artificial immune system for data analysis. Knowl. Based Sys. 14(3-4), 121–130 (2001)
Neal, M.: An artificial immune system for continuous analysis of time-varying data. In: Timmis, J., Bentley, P. (eds.) Proc. of the 1st ICARIS. 1, 76–85 (2002)
Galeano, J.C., Veloza-Suan, A., González, F.A.: A comparative analysis of artificial immune network models. In: Proc. of the GECCO, pp. 361–368 (2005)
Gonzalez, F., Dasgupta, D.: Anomaly detection using real-valued negative selection. Genetic Prog. and Evol. Mach. 4(4), 383–403 (2003)
Ji, Z., Dasgupta, D.: Real-valued negative selection algorithm with variable-sized detectors. In: Deb, K., et al. (eds.) GECCO 2004. LNCS, vol. 3102, pp. 287–298. Springer, Heidelberg (2004)
Crook, N., Goh, W.J., Hawarat, M.: Pattern recall in networks of chaotic neurons. BioSystems 87, 267–274 (2007)
Belatreche, A., Maguire, L.P., McGinnity, M.: Advances in design and application of spiking neural networks. Soft Comput. 11, 239–248 (2007)
Stepney, S., Smith, R.E., Timmis, J., Tyrrell, A.M., Neal, M.J., Hone, A.N.W.: Conceptual frameworks for artificial immune systems. Int. J. of Unconv. Comp. 1(3), 315–338 (2005)
Aickelin, U., Bentley, P.J., Cayzer, S., Kim, J., Mcleon, J.: Danger theory: The link between AIS and IDS? In: Timmis, J., Bentley, P.J., Hart, E. (eds.) ICARIS 2003. LNCS, vol. 2787, pp. 147–155. Springer, Heidelberg (2003)
Twycross, J., Aickelin, U.: Towards a conceptual framework for innate immunity. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 112–125. Springer, Heidelberg (2005)
Greensmith, J., Aickelin, U., Cayzer, S.: Introducing dendritic cells as a novel immune-inspired algorithm for anomaly detection. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 153–167. Springer, Heidelberg (2005)
Andrews, P.S., Timmis, J.: Inspiration for the next generation of artificial immune systems. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 126–138. Springer, Heidelberg (2005)
Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford Univ. Press, Oxford (1995)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Guzella, T.S., Mota-Santos, T.A., Caminhas, W.M. (2007). Towards a Novel Immune Inspired Approach to Temporal Anomaly Detection. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds) Artificial Immune Systems. ICARIS 2007. Lecture Notes in Computer Science, vol 4628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73922-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-540-73922-7_11
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73921-0
Online ISBN: 978-3-540-73922-7
eBook Packages: Computer ScienceComputer Science (R0)