Skip to main content

Artificial Immune Systems for Classification of Petroleum Well Drilling Operations

  • Conference paper
Artificial Immune Systems (ICARIS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4628))

Included in the following conference series:

Abstract

This paper presents two approaches of Artificial Immune System for Pattern Recognition (CLONALG and Parallel AIRS2) to classify automatically the well drilling operation stages. The classification is carried out through the analysis of some mud-logging parameters. In order to validate the performance of AIS techniques, the results were compared with others classification methods: neural network, support vector machine and lazy learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Unneland, T., Hauser, M.: Real-Time Asset Management: From Vision to Engagement–An Operator’s Experience. In: Proc. SPE Annual Technical Conference and Exhibition, Dallas, USA (2005)

    Google Scholar 

  2. Yue, Z.Q., Lee, C.F., Law, K., Tham, L.G.: Automatic monitoring of rotary-percussive drilling for ground characterization – illustrated by a case example in Hong Kong. International Journal of Rock Mechanics & Mining Sciences 41, 573–612 (2003)

    Article  Google Scholar 

  3. de Castro, L., Timmis, J.: Artificial immune systems: A new computational approach. Springer, London, UK (2002)

    MATH  Google Scholar 

  4. de Castro, L.N., Von Zuben, F.J.: The Clonal Selection Algorithm with Engineering Applications. In: Whitley, L.D., Goldberg, D.E., Cantú-Paz, E., Spector, L., Parmee, I.C., Beyer, H.-G. (eds.) GECCO 2000. Proceedings of the Genetic and Evolutionary Computation Conference, Workshop on Artificial Immune Systems and Their Applications, pp. 36–37. Morgan Kaufmann, Las Vegas, Nevada, USA (2000)

    Google Scholar 

  5. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)

    Article  Google Scholar 

  6. Watkins, A., Boggess, L.: A new classifier based on resource limited Artificial Immune Systems. In: CEC 2002. Proc. 2002 Congress on Evolutionary Computation, Honolulu, Hawaii, IEEE Press, New York (2002)

    Google Scholar 

  7. Watkins, A., Timmis, J., Boggess, L.: Artificial Immune Recognition System (AIRS): An Immune-Inspired Supervised Learning Algorithm. Genetic Programming and Evolvable Machines 5(3), 291–317 (2004)

    Article  Google Scholar 

  8. Watkins, A., Timmis, J.: Artificial Immune Recognition System (AIRS): Revisions and Refinements. In: Timmis, J., Bentley, P.J. (eds.) ICARIS 2002. Proc. of 1st International Conference on Artificial Immune Systems, pp. 173–181. University of Kent at Canterbury (2002)

    Google Scholar 

  9. Watkins, A., Timmis, J.: Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 427–438. Springer, Heidelberg (2004)

    Google Scholar 

  10. Tavares, R.M., Mendes, J.R.P., Morooka, C.K., Plácido, J.C.R.: Automated Classification System for Petroleum Well Drilling using Mud-Logging Data. In: Proc. of 18th International Congress of Mechanical Engineer.Offshore & Petroleum and Engineering, Ouro Preto, Brazil (2005)

    Google Scholar 

  11. Serapião, A.B.S., Tavares, R.M., Mendes, J.R.P., Morooka, C.K: Classificação automática da operação de perfuração de poços de petróleo através de redes neurais. In: Proc. of VII Brazilian Symposium on Intelligent Automation (SBAI). São Luís-MA, Brazil (2005)

    Google Scholar 

  12. Serapião, A.B.S., Tavares, R.M., Mendes, J.R.P., Guilherme, I.R.: Classification of Petroleum Wells Drilling Operations Using Support Vectors Machine (SVM). In: CIMCA 2006. Proc. of International Conference on Computational Intelligence for Modelling, Control and Automation, IEEE Computer Society, Sydney, Australia (2006)

    Google Scholar 

  13. Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artificial Intelligence Review 11(1-5), 11–73 (1997)

    Article  Google Scholar 

  14. Kyllingstad, A., Horpestad, J.L., Klakegg, S., Kristiansen, A., Aadnoy, B.S.: Factors Limiting the Quantitative Use of Mud-Logging Data. In: Proc. of the SPE Asia Pacific Oil and Gas Conference, Singapore (1993)

    Google Scholar 

  15. Ada, G.L., Nossal, G.J.V.: The Clonal Selection Theory. Scientific American 257(2), 50–57 (1987)

    Article  Google Scholar 

  16. Berek, C., Ziegner, M.: The Maturation of the Immune Response. Imm. Today 14(8), 400–402 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Leandro Nunes de Castro Fernando José Von Zuben Helder Knidel

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Serapião, A.B.S., Mendes, J.R.P., Miura, K. (2007). Artificial Immune Systems for Classification of Petroleum Well Drilling Operations. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds) Artificial Immune Systems. ICARIS 2007. Lecture Notes in Computer Science, vol 4628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73922-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73922-7_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73921-0

  • Online ISBN: 978-3-540-73922-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy