Abstract
This paper presents two approaches of Artificial Immune System for Pattern Recognition (CLONALG and Parallel AIRS2) to classify automatically the well drilling operation stages. The classification is carried out through the analysis of some mud-logging parameters. In order to validate the performance of AIS techniques, the results were compared with others classification methods: neural network, support vector machine and lazy learning.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Unneland, T., Hauser, M.: Real-Time Asset Management: From Vision to Engagement–An Operator’s Experience. In: Proc. SPE Annual Technical Conference and Exhibition, Dallas, USA (2005)
Yue, Z.Q., Lee, C.F., Law, K., Tham, L.G.: Automatic monitoring of rotary-percussive drilling for ground characterization – illustrated by a case example in Hong Kong. International Journal of Rock Mechanics & Mining Sciences 41, 573–612 (2003)
de Castro, L., Timmis, J.: Artificial immune systems: A new computational approach. Springer, London, UK (2002)
de Castro, L.N., Von Zuben, F.J.: The Clonal Selection Algorithm with Engineering Applications. In: Whitley, L.D., Goldberg, D.E., Cantú-Paz, E., Spector, L., Parmee, I.C., Beyer, H.-G. (eds.) GECCO 2000. Proceedings of the Genetic and Evolutionary Computation Conference, Workshop on Artificial Immune Systems and Their Applications, pp. 36–37. Morgan Kaufmann, Las Vegas, Nevada, USA (2000)
de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)
Watkins, A., Boggess, L.: A new classifier based on resource limited Artificial Immune Systems. In: CEC 2002. Proc. 2002 Congress on Evolutionary Computation, Honolulu, Hawaii, IEEE Press, New York (2002)
Watkins, A., Timmis, J., Boggess, L.: Artificial Immune Recognition System (AIRS): An Immune-Inspired Supervised Learning Algorithm. Genetic Programming and Evolvable Machines 5(3), 291–317 (2004)
Watkins, A., Timmis, J.: Artificial Immune Recognition System (AIRS): Revisions and Refinements. In: Timmis, J., Bentley, P.J. (eds.) ICARIS 2002. Proc. of 1st International Conference on Artificial Immune Systems, pp. 173–181. University of Kent at Canterbury (2002)
Watkins, A., Timmis, J.: Exploiting Parallelism Inherent in AIRS, an Artificial Immune Classifier. In: Nicosia, G., Cutello, V., Bentley, P.J., Timmis, J. (eds.) ICARIS 2004. LNCS, vol. 3239, pp. 427–438. Springer, Heidelberg (2004)
Tavares, R.M., Mendes, J.R.P., Morooka, C.K., Plácido, J.C.R.: Automated Classification System for Petroleum Well Drilling using Mud-Logging Data. In: Proc. of 18th International Congress of Mechanical Engineer.Offshore & Petroleum and Engineering, Ouro Preto, Brazil (2005)
Serapião, A.B.S., Tavares, R.M., Mendes, J.R.P., Morooka, C.K: Classificação automática da operação de perfuração de poços de petróleo através de redes neurais. In: Proc. of VII Brazilian Symposium on Intelligent Automation (SBAI). São Luís-MA, Brazil (2005)
Serapião, A.B.S., Tavares, R.M., Mendes, J.R.P., Guilherme, I.R.: Classification of Petroleum Wells Drilling Operations Using Support Vectors Machine (SVM). In: CIMCA 2006. Proc. of International Conference on Computational Intelligence for Modelling, Control and Automation, IEEE Computer Society, Sydney, Australia (2006)
Atkeson, C.G., Moore, A.W., Schaal, S.: Locally weighted learning. Artificial Intelligence Review 11(1-5), 11–73 (1997)
Kyllingstad, A., Horpestad, J.L., Klakegg, S., Kristiansen, A., Aadnoy, B.S.: Factors Limiting the Quantitative Use of Mud-Logging Data. In: Proc. of the SPE Asia Pacific Oil and Gas Conference, Singapore (1993)
Ada, G.L., Nossal, G.J.V.: The Clonal Selection Theory. Scientific American 257(2), 50–57 (1987)
Berek, C., Ziegner, M.: The Maturation of the Immune Response. Imm. Today 14(8), 400–402 (1993)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Serapião, A.B.S., Mendes, J.R.P., Miura, K. (2007). Artificial Immune Systems for Classification of Petroleum Well Drilling Operations. In: de Castro, L.N., Von Zuben, F.J., Knidel, H. (eds) Artificial Immune Systems. ICARIS 2007. Lecture Notes in Computer Science, vol 4628. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73922-7_5
Download citation
DOI: https://doi.org/10.1007/978-3-540-73922-7_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73921-0
Online ISBN: 978-3-540-73922-7
eBook Packages: Computer ScienceComputer Science (R0)