Abstract
Particle swarm optimization (PSO) is a robust swarm intelligent technique inspired from birds flocking and fish schooling. Though many effective improvements have been proposed, however, the premature convergence is still its main problem. Because each particle’s movement is a continuous process and can be modelled with differential equation groups, a new variant, particle swarm optimization with dynamic step length (PSO-DSL), with additional control coefficient- step length, is introduced. Then the absolute stability theory is introduced to analyze the stability character of the standard PSO, the theoretical result indicates the PSO with constant step length can not always be stable, this may be one of the reason for premature convergence. Simulation results show the PSO-DSL is effective.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Bäck, T.: Evolutionary Algorithms in Theory and Practice. Oxford University Press, New York (1996)
Anderson, J.: A Simple Neural Network Generating an Interactive Memory. Mathematical Biosciences 14, 197–220 (1972)
Bonabeau, E., Dorigo, M., Theraulaz, G.: Swarm Intelligence: From Natural to Artificial Systems, Santa Fe Institute Publications (1999)
Abraham, A., Grosan, C., Ramos, V.: Swarm Intelligence and Data Mining, Studies in Computational Intelligence. Springer, Heidelberg (2006)
Andries, G., Engelbrecht, P.: Fundamentals of Computational Swarm Intelligence. Wiley Publishing, Chichester (2006)
Kennedy, J., Eberhart, R.C.: Particle Swarm Optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)
Eberhart, R.C., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In: Proceedings of 6th International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)
Cui, Z.H., Zeng, J.C., Sun, G.J.: A Fast Particle Swarm Optimization. International Journal of Innovative Computing, Information and Control 2, 1365–1380 (2006)
Monson, C.K., Seppi, K.D.: The Kalman Swarm: A New Approach to Particle Motion in Swarm Optimization. In: Proceedings of the Genetic and Evolutionary Computation Conference, pp. 140–150 (2004)
Iwasaki, N., Yasuda, K.: Adaptive Particle Swarm Optimization Using Velocity Feedback. International Journal of Innovative Computing, Information and Control 1, 369–380 (2005)
Liang, J.J., Qin, A.K., Suganthan, P.N., Baskar, S.: Comprehensive Learning Particle Swarm Optimizer for Global Optimization of Multimodal Functions. IEEE Transactions on Evolutionary Computation 10, 281–295 (2006)
Cui, Z.H., Zeng, J.C.: A Guaranteed Global Convergence Particle Swarm Optimizer, Lecture Notes in Artificial Intelligence, vol. In: Tsumoto, S., Słowiński, R., Komorowski, J., Grzymała-Busse, J.W. (eds.) RSCTC 2004. LNCS (LNAI), vol. 3066, pp. 762–767. Springer, Heidelberg (2004)
Ratnaweera, A., Halgamuge, S.K., Watson, H.C.: Self-Organizing Hierarchical Particle Swarm Opitmizer with Time-Varying Acceleration Coefficients. IEEE Transactions on Evolutionary Computation 8, 240–255 (2004)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cui, Z., Cai, X., Zeng, J., Sun, G. (2007). Particle Swarm Optimization with Dynamic Step Length. In: Huang, DS., Heutte, L., Loog, M. (eds) Advanced Intelligent Computing Theories and Applications. With Aspects of Artificial Intelligence. ICIC 2007. Lecture Notes in Computer Science(), vol 4682. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74205-0_81
Download citation
DOI: https://doi.org/10.1007/978-3-540-74205-0_81
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74201-2
Online ISBN: 978-3-540-74205-0
eBook Packages: Computer ScienceComputer Science (R0)