Skip to main content

Image Segmentation Using Topological Persistence

  • Conference paper
Computer Analysis of Images and Patterns (CAIP 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4673))

Included in the following conference series:

Abstract

This paper presents a new hybrid split-and-merge image segmentation method based on computational geometry and topology using persistent homology. The algorithm uses edge-directed topology to initially split the image into a set of regions based on the Delaunay triangulations of the points in the edge map. Persistent homology is used to generate three types of regions: p-persistent regions, p-transient regions, and d-triangles. The p-persistent regions correspond to core objects in the image, while p-transient regions and d-triangles are smaller regions that may be combined in the merge phase, either with p-persistent regions to refine the core or with other p-transient and d-triangles regions to potentially form new core objects. Performing image segmentation based on topology and persistent homology guarantees several nice properties, and initial results demonstrate high quality image segmentation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Canny, J.: A Computational Approach To Edge Detection. IEEE Trans. Pattern Analysis and Machine Intelligence 8, 679–714 (1986)

    Article  Google Scholar 

  2. Edelsbrunner, H.: Algorithms in Combinatorial Geometry. Springer, New York (1987)

    MATH  Google Scholar 

  3. Edelsbrunner, H.: The Union of Balls and its Dual Shape. In: Proceedings of the Ninth Annual Symposium on Computational Geometry, pp. 218–231 (1993)

    Google Scholar 

  4. Edelsbrunner, H., Letscher, D., Zomorodian, A.: Topological Persistence and Simplification. Discrete and Computational Geometry 28, 511–533 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Fortune, S.: A Sweepline Algorithm for Voronoi Diagrams. Algorithmica 2, 153–174 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gevers, T., Smeulders, A.W.M.: Combining Region Splitting and Edge Detection through Guided Delaunay Image Subdivision. In: Proc. of the 1997 International Conference on Computer Vision and Pattern Recognition, pp. 1021–1026 (1997)

    Google Scholar 

  7. Guibas, L., Knuth, D., Sharir, M.: Randomized Incremental Construction of Delaunay and Voronoi Diagrams. Algorithmica 7, 381–413 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  8. Mallat, S., Zhong, S.: Characterization of signals from Multiscale Edges. IEEE Trans. Patt. Anal. and Mach. Intell. 14, 710–732 (1992)

    Article  Google Scholar 

  9. Massey, W.: A Basic Course in Algebraic Topology. Springer, Heidelberg (1991)

    MATH  Google Scholar 

  10. Prasad, L., Skourikhine, A.N.: Vectorized Image Segmentation via Trixel Agglomeration. In: Brun, L., Vento, M. (eds.) GbRPR 2005. LNCS, vol. 3434, pp. 12–22. Springer, Heidelberg (2005)

    Google Scholar 

  11. Stelldinger, P., Ullrich, K., Meine, H.: Topologically Correct Image Segmentation Using Alpha Shapes. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 542–554. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Walter G. Kropatsch Martin Kampel Allan Hanbury

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Letscher, D., Fritts, J. (2007). Image Segmentation Using Topological Persistence. In: Kropatsch, W.G., Kampel, M., Hanbury, A. (eds) Computer Analysis of Images and Patterns. CAIP 2007. Lecture Notes in Computer Science, vol 4673. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74272-2_73

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74272-2_73

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74271-5

  • Online ISBN: 978-3-540-74272-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy