Abstract
In this paper, we propose a new two-step algorithm (PDTA) to solve the problem of underdetermined blind separation, where the number of sensors is less than that of source signals. Unlike the usual two-step algorithm, our algorithm’s first step is to estimate the number of source signals and the mixture matrix instead of K-mean clustering algorithm, in which people often suppose that the number of source signals is known when they estimate the mixture matrix. After the mixture matrix is estimated by PDTA, the short path algorithm is used to recover source signals. The last simulations show the good performance of estimation the number of source signals and recovering source signals.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Zhang, J.L., Xie, S.L., He, Z.S.: Separability theory for blind signal separation. Zidonghua Xuebao/Acta Automatica Sinica 30(3), 337–344 (2004)
Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13, 411–430 (2000)
Yang, H.H., Amari, S., Cichocki, A.: Information-theoretic approach to blind separation of sources in nonlinear mixture. Signal Processing 64, 291–300 (1998)
Xie, S.L., He, Z.S., Gao, Y.: Adaptive Theory of Signal Processing. 1st ed. Chinese Science Press, Beijing, pp. 130–223 (2006)
Anand, K., Mathew, G., Reddy, V.U.: Blind separation of multiple co-channel BPSK signals arriving at an antenna array. IEEE Signal Process 2, 176–178 (1995)
Jutten, C., Herault, J.: Blind separation of sources, Part I: An adaptive algorithm based on neuromimetic. Signal Processing 24, 1–10 (1991)
Xie, S.L., He, Z.S., Fu, Y.L.: A note on Stone’s conjecture of blind separation. Neural Computation 16, 245–319 (2004)
Xiao, M., Xie, S.L., Fu, Y.L.: A novel approach for underdetermined blind sources separation in frequency domain. In: Wang, J., Liao, X.-F., Yi, Z. (eds.) ISNN 2005. LNCS, vol. 3497, pp. 484–489. Springer, Heidelberg (2005)
Li, Y., Wang, J., Zurada, J.M.: Blind extraction of singularly mixed source signals. IEEE Trans on Neural Networks 11, 1413–1422 (2000)
Li, Y., Wang, J.: Sequential blind extraction of instantaneously mixed sources. IEEE Trans. Signal processing 50(5), 997–1006 (2002)
Belouchrani, A., Cardoso, J.F.: Maximum likelihood source separation for discrete sources. In: Proc. EUSIPCO, pp. 768–771 (1994)
Zibulevsky, M., Pearlmutter, B.A.: Blind source separation by sparse decomposition in a signal dictionary. Neural computation 13(4), 863–882 (2001)
Lee, T.W., Lewicki, M.S., Girolami, M., Sejnowski, T.J.: Blind source separation of more sources than mixtures using overcomplete representation. IEEE Signal processing letter 6, 87–90 (1999)
Lewicki, M.S., Sejnowski, T.J.: Learning overcomplete representations. Neural computation 12, 337–365 (2000)
Li, Y., Cichocki, A., Amari, S.: Analysis of Sparse Representation and Blind Source Separation. Neural Computation 16, 1193–1234 (2004)
Bofill, P., Zibulevsky, M.: Underdetermined source separation using sparse representation. Signal processing 81, 2353–2362 (2001)
He, Z.S., Xie, S.L., Fu, Y.L.: Sparse Representation and Blind Source Separation of Ill-posed Mixtures. Science in China Series F-Information Sciences 49, 639–652 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Li, R., Tan, B. (2007). Estimation of Source Signals Number and Underdetermined Blind Separation Based on Sparse Representation. In: Wang, Y., Cheung, Ym., Liu, H. (eds) Computational Intelligence and Security. CIS 2006. Lecture Notes in Computer Science(), vol 4456. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74377-4_99
Download citation
DOI: https://doi.org/10.1007/978-3-540-74377-4_99
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74376-7
Online ISBN: 978-3-540-74377-4
eBook Packages: Computer ScienceComputer Science (R0)