Skip to main content

Stereo Matching Using Population-Based MCMC

  • Conference paper
Computer Vision – ACCV 2007 (ACCV 2007)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4844))

Included in the following conference series:

Abstract

In this paper, we propose a new stereo matching method using the population-based Markov Chain Monte Carlo (Pop-MCMC). Pop-MCMC belongs to the sampling-based methods. Since previous MCMC methods produce only one sample at a time, only local moves are available. However, since Pop-MCMC uses multiple chains and produces multiple samples at a time, it enables global moves by exchanging information between samples, and in turn leads to faster mixing rate. In the view of optimization, it means that we can reach a state with the lower energy. The experimental results on real stereo images demonstrate that the performance of proposed algorithm is superior to those of previous algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scharstein, D., Szeliski, R.: A Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms. Microsoft Research Technical Report MSR-TR-2001-81 (2001)

    Google Scholar 

  2. Birchfield, S., Tomasi, C.: A Pixel Dissimilarity Measure That is Insensitive to Image Sampling. IEEE Trans. Pattern Analysis and Machine Intelligence (1998)

    Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Analysis and Machine Intelligence 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  4. Kolmogorov, V., Zabih, R.: Computing visual correspondence with occlusions using graph cuts. In: Proc. Int’l. Conf. Computer Vision, pp. 508–515 (2001)

    Google Scholar 

  5. Kolmogorov, V., Zabih, R.: Multi-camera scene reconstruction via graph cuts. In: Proc. European Conf. Computer Vision, pp. 82–96 (2002)

    Google Scholar 

  6. Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE Trans. Pattern Analysis and Machine Intelligence 25(7), 787–800 (2003)

    Article  Google Scholar 

  7. Ohta, Y., Kanade, T.: Stereo by intra- and inter-scanline search. TPAMI 2, 449–470 (1985)

    Google Scholar 

  8. Veksler, O.: Stereo Correspondence by Dynamic Programming on a Tree. Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  9. Barbu, A., Zhu, S.C.: Graph Partition By Swendsen-Wang cuts: International Conf. Computer Vision, pp. 320–327 (2003)

    Google Scholar 

  10. Barbu, A., Zhu, S.C.: Multigrid and multi-level Swendsen-Wang cuts for hierarchic graph partition. Computer Vision and Pattern Recognition, 731–738 (2004)

    Google Scholar 

  11. Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  12. Liang, F., Wong, W.H.: Evolutionary Monte Carlo: Applications to Model Sampling and Change Point Problem. Statistica Sinica 10, 317–342 (2000)

    MATH  Google Scholar 

  13. Jasra, A., Stephens, D.A.: On Population-Based Simulation for Static Inference (2005)

    Google Scholar 

  14. Comanicu, D., Meer, P.: Mean shift: A robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Machine Intell. 24, 603–619 (2002)

    Article  Google Scholar 

  15. Tao, H., Sawhney, H.S., Kumar, R.: A Global Matching Framework for Stereo Computation. In: Proc. Int’l. Conf. Computer Vision, vol. 1, pp. 532–539 (2001)

    Google Scholar 

  16. Bleyer, M., Gelautz, M.: Graph-based surface reconstruction from stereo pairs using image segmentation. In: Proc. SPIE, Videometrics VIII, vol. 5665, pp. 288–299 (2005)

    Google Scholar 

  17. Hong, L., Chen, G.: Segment-Based Stereo Matching Using Graph Cuts. Computer Vision and Pattern Recognition, I, 74–81 (2004)

    Google Scholar 

  18. Klaus, A., Sormann, M., Karner, K.: Segment-Based Stereo Matching Using Belief Propagation and a Self-Adapting Dissimilarity Measure. In: International Conf. Pattern Recognition, pp. 15–18 (2006)

    Google Scholar 

  19. Geyer, C.J.: Markov chain Monte Carlo maximum likelihood, Computing Science and Statistics, 156–163 (1991)

    Google Scholar 

  20. Hukushima, K., Nemoto, K.: Exchange Monte Carlo method and application to spin glass simulations. J. Phys. Soc. Jpn. 65, 1604–1608

    Google Scholar 

  21. http://cat.middlebury.edu/stereo

Download references

Author information

Authors and Affiliations

Authors

Editor information

Yasushi Yagi Sing Bing Kang In So Kweon Hongbin Zha

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Park, J., Kim, W., Lee, K.M. (2007). Stereo Matching Using Population-Based MCMC. In: Yagi, Y., Kang, S.B., Kweon, I.S., Zha, H. (eds) Computer Vision – ACCV 2007. ACCV 2007. Lecture Notes in Computer Science, vol 4844. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-76390-1_55

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-76390-1_55

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-76389-5

  • Online ISBN: 978-3-540-76390-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy