Abstract
In geometric constraints solving, the detection of dependences and the decomposition of the system into smaller subsystems are two important steps that characterize any solving process, but nowadays solvers, which are graph-based in most of the cases, fail to detect dependences due to geometric theorems and to decompose such systems. In this paper, we discuss why detecting all dependences between constraints is a hard problem and propose to use the witness method published recently to detect both structural and non structural dependences. We study various examples of constraints systems and show the promising results of the witness method in subtle dependences detection and systems decomposition.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ait-Aoudia, S., Jegou, R., Michelucci, D.: Reduction of constraint systems. In: Compugraphic, Alvor, Portugal, pp. 83–92 (1993)
Bonin, J.E.: Introduction to matroid theory. The George Washington University web site (2001)
Bruderlin, B., Roller, D. (eds.): Geometric Constraint Solving and Applications. Springer, Heidelberg (1998)
Cox, D., Little, J., O’ Shea, D.: Ideals, varieties and algorithms, 2nd edn. Springer, Heidelberg (1996)
Coxeter, H.: Projective geometry. Springer, Heidelberg (1987)
Crippen, G.M., Havel, T.F.: Distance Geometry and Molecular Conformation, Taunton, U.K. Research Studies Press (1988) ISBN 0-86380-073-4
Durand, C., Hoffmann, C.M.: Variational constraints in 3D. In: Shape Modeling International, pp. 90–97 (1999)
Gao, X.-S., Zhang, G.: Geometric constraint solving via c-tree decomposition. In: ACM Solid Modelling, pp. 45–55. ACM Press, New York (2003)
Graver, J.E., Servatius, B., Servatius, H.: Combinatorial Rigidity. Graduate Studies in Math., AMS (1993)
Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)
Hoffmann, C.M.: Summary of basic 2D constraint solving. International Journal of Product Lifecycle Management 1(2), 143–149 (2006)
Hoffmann, C.M., Lomonosov, A., Sitharam, M.: Decomposition plans for geometric constraint problems, part II: New algorithms. J. Symbolic Computation 31, 409–427 (2001)
Hoffmann, C.M., Lomonosov, A., Sitharam, M.: Decomposition plans for geometric constraint systems, part I: Performance measures for CAD. J. Symbolic Computation 31, 367–408 (2001)
Jermann, C., Neveu, B., Trombettoni, G.: A new structural rigidity for geometric constraint systems. In: Winkler, F. (ed.) ADG 2002. LNCS (LNAI), vol. 2930, pp. 87–106. Springer, Heidelberg (2004)
Jermann, C., Trombettoni, G., Neveu, B., Mathis, P.: Decomposition of geometric constraint systems: a survey. Internation Journal of Computational Geometry and Applications (IJCGA) (to appear 2006)
Jermann, C., Trombettoni, G., Neveu, B., Rueher, M.: A new heuristic to identify rigid clusters. In: Richter-Gebert, J., Wang, D. (eds.) ADG 2000. LNCS (LNAI), vol. 2061, pp. 2–6. Springer, Heidelberg (2001)
Latham, R.S., Middletich, A.E.: Connectivity analysis: a tool for processing geometric constraints. Computer-Aided Design 28(11), 917–928 (1996)
Lovasz, L., Yemini, Y.: On generic rigidity in the plane. SIAM J. Algebraic Discrete Meth. 3(1), 91–98 (1982)
Michelucci, D., Foufou, S.: Geometric constraint solving: the witness configuration method. Computer Aided Design 38(4), 284–299 (2006)
Owen, J.C.: Algebraic solution for geometry from dimensional constraints. In: Proc. of the Symp. on Solid Modeling Foundations and CAD/CAM Applications, pp. 397–407 (1991)
Owen, J.C.: Constraint on simple geometry in two and three dimensions. Int. J. Comput. Geometry Appl. 6(4), 421–434 (1996)
Richter-Gebert, J.: Realization Spaces of Polytopes. LNCM, vol. 1643. Springer, Heidelberg (1996)
Serrano, D.: Automatic dimensioning in design for manufacturing. In: Sympos. on Solid Modeling Foundations and CAD/CAM Applications, pp. 379–386 (1991)
Sitharam, M.: Combinatorial approaches to geometric constraint solving: Problems, progress and directions. In: Dutta, D., Janardan, R., Smid, M. (eds.) AMS/DIMACS. Computer aided design and manufacturing (2005)
Wester, M.J.: Contents of Computer Algebra Systems: A Practical Guide. John Wiley and Sons, Chichester (1999)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Michelucci, D., Foufou, S. (2007). Detecting All Dependences in Systems of Geometric Constraints Using the Witness Method. In: Botana, F., Recio, T. (eds) Automated Deduction in Geometry. ADG 2006. Lecture Notes in Computer Science(), vol 4869. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77356-6_7
Download citation
DOI: https://doi.org/10.1007/978-3-540-77356-6_7
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-77355-9
Online ISBN: 978-3-540-77356-6
eBook Packages: Computer ScienceComputer Science (R0)