Skip to main content

Computing Longest Common Substring and All Palindromes from Compressed Strings

  • Conference paper
SOFSEM 2008: Theory and Practice of Computer Science (SOFSEM 2008)

Abstract

This paper studies two problems on compressed strings described in terms of straight line programs (SLPs). One is to compute the length of the longest common substring of two given SLP-compressed strings, and the other is to compute all palindromes of a given SLP-compressed string. In order to solve these problems efficiently (in polynomial time w.r.t. the compressed size) decompression is never feasible, since the decompressed size can be exponentially large. We develop combinatorial algorithms that solve these problems in O(n 4 logn) time with O(n 3) space, and in O(n 4) time with O(n 2) space, respectively, where n is the size of the input SLP-compressed strings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans. Info. Theory IT-23(3), 337–349 (1977)

    Article  MathSciNet  Google Scholar 

  2. Ziv, J., Lempel, A.: Compression of individual sequences via variable-length coding. IEEE Trans. Info. Theory 24(5), 530–536 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  3. Kieffer, J., Yang, E., Nelson, G., Cosman, P.: Universal lossless compression via multilevel pattern matching. IEEE Trans. Info. Theory 46(4), 1227–1245 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Nevill-Manning, C.G., Witten, I.H., Maulsby, D.L.: Compression by induction of hierarchical grammars. In: DCC 1994, pp. 244–253. IEEE Press, Los Alamitos (1994)

    Google Scholar 

  5. Gasieniec, L., Karpinski, M., Plandowski, W., Rytter, W.: Efficient algorithms for Lempel-Ziv encoding. In: Karlsson, R., Lingas, A. (eds.) SWAT 1996. LNCS, vol. 1097, pp. 392–403. Springer, Heidelberg (1996)

    Google Scholar 

  6. Rytter, W.: Grammar compression, lz-encodings, and string algorithms with implicit input. In: Díaz, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142, pp. 15–27. Springer, Heidelberg (2004)

    Google Scholar 

  7. Inenaga, S., Shinohara, A., Takeda, M.: An efficient pattern matching algorithm on a subclass of context free grammars. In: Calude, C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 225–236. Springer, Heidelberg (2004)

    Google Scholar 

  8. Plandowski, W.: Testing equivalence of morphisms on context-free languages. In: van Leeuwen, J. (ed.) ESA 1994. LNCS, vol. 855, pp. 460–470. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  9. Karpinski, M., Rytter, W., Shinohara, A.: An efficient pattern-matching algorithm for strings with short descriptions. Nordic Journal of Computing 4, 172–186 (1997)

    MATH  MathSciNet  Google Scholar 

  10. Miyazaki, M., Shinohara, A., Takeda, M.: An improved pattern matching algorithm for strings in terms of straight-line programs. In: Hein, J., Apostolico, A. (eds.) CPM 1997. LNCS, vol. 1264, pp. 1–11. Springer, Heidelberg (1997)

    Google Scholar 

  11. Lifshits, Y.: Processing compressed texts: A tractability border. In: CPM 2007. LNCS, vol. 4580, pp. 228–240. Springer, Heidelberg (2007)

    Google Scholar 

  12. Lifshits, Y., Lohrey, M.: Querying and embedding compressed texts. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 681–692. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  13. Apostolico, A., Breslauer, D., Galil, Z.: Parallel detection of all palindromes in a string. Theoretical Computer Science 141, 163–173 (1995)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Viliam Geffert Juhani Karhumäki Alberto Bertoni Bart Preneel Pavol Návrat Mária Bieliková

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto, K. (2008). Computing Longest Common Substring and All Palindromes from Compressed Strings. In: Geffert, V., Karhumäki, J., Bertoni, A., Preneel, B., Návrat, P., Bieliková, M. (eds) SOFSEM 2008: Theory and Practice of Computer Science. SOFSEM 2008. Lecture Notes in Computer Science, vol 4910. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77566-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77566-9_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77565-2

  • Online ISBN: 978-3-540-77566-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy