Abstract
This paper proposes a statistical approach to labeling images using a more natural graphical structure than the pixel grid (or some uniform derivation of it such as square patches of pixels). Typically, low-level vision estimations based on graphical models work on the regular pixel lattice (with a known clique structure and neighborhood). We move away from this regular lattice to more meaningful statistics on which the graphical model, specifically the Markov network is defined. We create the irregular graph based on superpixels, which results in significantly fewer nodes and more natural neighborhood relationships between the nodes of the graph. Superpixels are a local, coherent grouping of pixels which preserves most of the structure necessary for segmentation. Their use reduces the complexity of the inferences made from the graphs with little or no loss of accuracy. Belief propagation (BP) is then used to efficiently find a local maximum of the posterior probability for this Markov network. We apply this statistical inference to finding (labeling) documents in a cluttered room (under moderately different lighting conditions).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cao, H., Govindaraju, V.: Handwritten carbon form preprocessing based on markov random field. In: Proc. IEEE Conf. Comput. Vision And Pattern Recogniton (2007)
Corso, J.J., Sharon, E., Yuille, A.L.: Multilevel Segmentation and Integrated Bayesian Model Classification with an Application to Brain Tumor Segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006, Part II. LNCS, vol. 4191, pp. 790–798. Springer, Heidelberg (2006)
Duncan, R., Qian, J., Zhu, B.: Polynomial time algorithms for three-label point labeling. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, p. 191. Springer, Heidelberg (2001)
Felzenszwalb, P., Huttenlocher, D.: Efficient belief propagation for early vision. In: Proc. IEEE Conf. Comput. Vision And Pattern Recogn. (2004)
Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. International Journal of Computer Vision 40(1), 25–47 (2000)
Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)
Luo, B., Hancock, E.R.: Structural graph matching using the em algorithm and singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1120–1136 (2001)
Mori, G., Ren, X., Efros, A.A., Malik, J.: Recovering human body configurations: Combining segmentation and recognition. In: Proc. IEEE Conf. Comput. Vision And Pattern Recogn., vol. 2, pp. 326–333 (2004)
Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of Uncertainty in AI, pp. 467–475 (1999)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)
Ren, X., Fowlkes, C.C., Malik, J.: Scale-invariant contour completion using conditional random fields. In: Proc. 10th Int’l. Conf. Computer Vision, vol. 2, pp. 1214–1221 (2005)
Sharon, E., Brandt, A., Basri, R.: Segmentation and boundary detection using multiscale intensity measurements. In: Proc. IEEE Conf. Comput. Vision And Pattern Recogn., vol. 1, pp. 469–476 (2001)
Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)
Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M.F., Rother, C.: A comparative study of energy minimization methods for markov random fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)
Tappen, M.F., Russell, B.C., Freeman, W.T.: Efficient graphical models for processing images. In: Proc. IEEE Conf. Comput. Vision And Pattern Recogniton, pp. 673–680 (2004)
Yu, S., Shi, J.: Segmentation with pairwise attraction and repulsion. In: Proceedings of the 8th IEEE IInternational Conference on Computer Vision (ICCV 2001) (July 2001)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Nwogu, I., Corso, J.J. (2008). Labeling Irregular Graphs with Belief Propagation. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds) Combinatorial Image Analysis. IWCIA 2008. Lecture Notes in Computer Science, vol 4958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78275-9_26
Download citation
DOI: https://doi.org/10.1007/978-3-540-78275-9_26
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78274-2
Online ISBN: 978-3-540-78275-9
eBook Packages: Computer ScienceComputer Science (R0)