Skip to main content

Labeling Irregular Graphs with Belief Propagation

  • Conference paper
Combinatorial Image Analysis (IWCIA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4958))

Included in the following conference series:

Abstract

This paper proposes a statistical approach to labeling images using a more natural graphical structure than the pixel grid (or some uniform derivation of it such as square patches of pixels). Typically, low-level vision estimations based on graphical models work on the regular pixel lattice (with a known clique structure and neighborhood). We move away from this regular lattice to more meaningful statistics on which the graphical model, specifically the Markov network is defined. We create the irregular graph based on superpixels, which results in significantly fewer nodes and more natural neighborhood relationships between the nodes of the graph. Superpixels are a local, coherent grouping of pixels which preserves most of the structure necessary for segmentation. Their use reduces the complexity of the inferences made from the graphs with little or no loss of accuracy. Belief propagation (BP) is then used to efficiently find a local maximum of the posterior probability for this Markov network. We apply this statistical inference to finding (labeling) documents in a cluttered room (under moderately different lighting conditions).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Cao, H., Govindaraju, V.: Handwritten carbon form preprocessing based on markov random field. In: Proc. IEEE Conf. Comput. Vision And Pattern Recogniton (2007)

    Google Scholar 

  2. Corso, J.J., Sharon, E., Yuille, A.L.: Multilevel Segmentation and Integrated Bayesian Model Classification with an Application to Brain Tumor Segmentation. In: Larsen, R., Nielsen, M., Sporring, J. (eds.) MICCAI 2006, Part II. LNCS, vol. 4191, pp. 790–798. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  3. Duncan, R., Qian, J., Zhu, B.: Polynomial time algorithms for three-label point labeling. In: Wang, J. (ed.) COCOON 2001. LNCS, vol. 2108, p. 191. Springer, Heidelberg (2001)

    Google Scholar 

  4. Felzenszwalb, P., Huttenlocher, D.: Efficient belief propagation for early vision. In: Proc. IEEE Conf. Comput. Vision And Pattern Recogn. (2004)

    Google Scholar 

  5. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. International Journal of Computer Vision 40(1), 25–47 (2000)

    Article  MATH  Google Scholar 

  6. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 6, 721–741 (1984)

    Article  MATH  Google Scholar 

  7. Luo, B., Hancock, E.R.: Structural graph matching using the em algorithm and singular value decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 23(10), 1120–1136 (2001)

    Article  Google Scholar 

  8. Mori, G., Ren, X., Efros, A.A., Malik, J.: Recovering human body configurations: Combining segmentation and recognition. In: Proc. IEEE Conf. Comput. Vision And Pattern Recogn., vol. 2, pp. 326–333 (2004)

    Google Scholar 

  9. Murphy, K.P., Weiss, Y., Jordan, M.I.: Loopy belief propagation for approximate inference: An empirical study. In: Proceedings of Uncertainty in AI, pp. 467–475 (1999)

    Google Scholar 

  10. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    Google Scholar 

  11. Ren, X., Fowlkes, C.C., Malik, J.: Scale-invariant contour completion using conditional random fields. In: Proc. 10th Int’l. Conf. Computer Vision, vol. 2, pp. 1214–1221 (2005)

    Google Scholar 

  12. Sharon, E., Brandt, A., Basri, R.: Segmentation and boundary detection using multiscale intensity measurements. In: Proc. IEEE Conf. Comput. Vision And Pattern Recogn., vol. 1, pp. 469–476 (2001)

    Google Scholar 

  13. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  14. Szeliski, R., Zabih, R., Scharstein, D., Veksler, O., Kolmogorov, V., Agarwala, A., Tappen, M.F., Rother, C.: A comparative study of energy minimization methods for markov random fields. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 16–29. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Tappen, M.F., Russell, B.C., Freeman, W.T.: Efficient graphical models for processing images. In: Proc. IEEE Conf. Comput. Vision And Pattern Recogniton, pp. 673–680 (2004)

    Google Scholar 

  16. Yu, S., Shi, J.: Segmentation with pairwise attraction and repulsion. In: Proceedings of the 8th IEEE IInternational Conference on Computer Vision (ICCV 2001) (July 2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Valentin E. Brimkov Reneta P. Barneva Herbert A. Hauptman

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nwogu, I., Corso, J.J. (2008). Labeling Irregular Graphs with Belief Propagation. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds) Combinatorial Image Analysis. IWCIA 2008. Lecture Notes in Computer Science, vol 4958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78275-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78275-9_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78274-2

  • Online ISBN: 978-3-540-78275-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy