We describe and analyze compartmental models for disease transmission. We begin with models for epidemics, showing how to calculate the basic reproduction number and the final size of the epidemic. We also study models with multiple compartments, including treatment or isolation of infectives. We then consider models including births and deaths in which there may be an endemic equilibrium and study the asymptotic stability of equilibria. We conclude by studying age of infection models which give a unifying framework for more complicated compartmental models.
Chapter PDF
Similar content being viewed by others
Keywords
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
References
R.M. Anderson, H.C. Jackson, R.M. May, A.M. Smith: Population dynamics of fox rabies in Europe. Nature, 289, 765–771 (1981)
R.M. Anderson, R.M. May: Infectious Diseases of Humans. Oxford Science Publications, Oxford (1991)
F. Brauer, C. Castillo-Chavez: Mathematical Models in Population Biology and Epidemiology. Springer, New York (2001)
S. Busenberg, K.L. Cooke: Vertically Transmitted Diseases: Models and Dynamics. Biomathematics, Vol. 23. Springer, Berlin Heidelberg New York (1993)
C. Castillo-Chavez with S. Blower, P. van den Driessche, D. Kirschner, A.A. Yakubu (eds.): Mathematical Approaches for Emerging and Reemerging Infectious Diseases: An Introduction. Springer, Berlin Heidelberg New York (2001)
C. Castillo-Chavez, with S.Blower, P. van den Driessche, D. Kirschner, A.A. Yakubu (eds.): Mathematical Approaches for Emerging and Reemerging Infectious Diseases: Models, Methods and Theory. Springer, Berlin Heidelberg New York (2001)
C. Castillo-Chavez, K.L. Cooke, W. Huang, S.A. Levin: The role of long incubation periods in the dynamics of HIV/AIDS. Part 1: Single populations models. J. Math. Biol., 27, 373–98 (1989)
C. Castillo-Chavez, H.R. Thieme: Asymptotically autonomous epidemic models. In: O. Arino, D. Axelrod, M. Kimmel, M. Langlais (eds.) Mathematical Population Dynamics: Analysis of Heterogeneity, Vol. 1: Theory of Epidemics. Wuerz, Winnipeg, pp. 33–50 (1993)
D.J. Daley, J. Gani: Epidemic Modelling: An Introduction. Cambridge Studies in Mathematical Biology, Vol. 16. Cambridge University Press, Cambridge (1999)
K. Dietz: Overall patterns in the transmission cycle of infectious disease agents. In: R.M. Anderson, R.M. May (eds.) Population Biology of Infectious Diseases. Life Sciences Research Report, Vol. 25. Springer, Berlin Heidelberg New York, pp. 87–102 (1982)
K. Dietz: The first epidemic model: a historical note on P.D. En’ko. Aust. J. Stat., 30, 56–65 (1988)
S. Ellner, R. Gallant, J. Theiler: Detecting nonlinearity and chaos in epidemic data. In: D. Mollison (ed.) Epidemic Models: Their Structure and Relation to Data. Cambridge University Press, Cambridge, pp. 229–247 (1995)
A. Gumel, S. Ruan, T. Day, J. Watmough, P. van den Driessche, F. Brauer, D. Gabrielson, C. Bowman, M.E. Alexander, S. Ardal, J. Wu, B.M. Sahai: Modeling strategies for controlling SARS outbreaks based on Toronto, Hong Kong, Singapore and Beijing experience. Proc. R. Soc. Lond. B Biol. Sci., 271, 2223–2232 (2004)
J.A.P. Heesterbeek, J.A.J. Metz: The saturating contact rate in marriage and epidemic models. J. Math. Biol., 31: 529–539 (1993)
H.W. Hethcote: Qualitative analysis for communicable disease models. Math. Biosci., 28, 335–356 (1976)
H.W. Hethcote: An immunization model for a hetereogeneous population. Theor. Popul. Biol., 14, 338–349 (1978)
H.W. Hethcote: The mathematics of infectious diseases. SIAM Rev., 42, 599–653 (2000)
H.W. Hethcote, S.A. Levin: Periodicity in epidemic models. In: S.A. Levin, T.G. Hallam, L.J. Gross (eds.) Applied Mathematical Ecology. Biomathematics, Vol. 18. Springer, Berlin Heidelberg New York, pp. 193–211 (1989)
H.W. Hethcote, H.W. Stech, P. van den Driessche: Periodicity and stability in epidemic models: a survey. In: S. Busenberg, K.L. Cooke (eds.) Differential Equations and Applications in Ecology, Epidemics and Population Problems. Academic, New York, pp. 65–82 (1981)
E. Hopf: Abzweigung einer periodischen Lösungen von einer stationaren Lösung eines Differentialsystems. Berlin Math-Phys. Sachsiche Akademie der Wissenschaften, Leipzig, 94, 1–22 (1942)
W.O. Kermack, A.G. McKendrick: A contribution to the mathematical theory of epidemics. Proc. R. Soc. Lond. B Biol. Sci., 115, 700–721 (1927)
W.O. Kermack, A.G. McKendrick: Contributions to the mathematical theory of epidemics, part. II. Proc. R. Soc. Lond. B Biol. Sci., 138, 55–83 (1932)
W.O. Kermack, A.G. McKendrick: Contributions to the mathematical theory of epidemics, part. III. Proc. R. Soc. Lond. B Biol. Sci., 141, 94–112 (1932)
L. Markus: Asymptotically autonomous differential systems. In: S. Lefschetz (ed.) Contributions to the Theory of Nonlinear Oscillations III. Annals of Mathematics Studies, Vol. 36. Princeton University Press, Princeton, NJ, pp. 17–29 (1956)
J. Mena-Lorca, H.W. Hethcote: Dynamic models of infectious diseases as regulators of population size. J. Math. Biol., 30, 693–716 (1992)
W.H. McNeill: Plagues and Peoples. Doubleday, New York (1976)
W.H. McNeill: The Global Condition. Princeton University Press, Princeton, NJ (1992)
L.A. Meyers, B. Pourbohloul, M.E.J. Newman, D.M. Skowronski, R.C. Brunham: Network theory and SARS: predicting outbreak diversity. J. Theor. Biol., 232, 71–81 (2005)
D. Mollison (ed.): Epidemic Models: Their Structure and Relation to Data. Cambridge University Press, Cambridge (1995)
M.E.J. Newman: The structure and function of complex networks. SIAM Rev., 45, 167–256 (2003)
G.F. Raggett: Modeling the Eyam plague. IMA J., 18, 221–226 (1982)
H.E. Soper: Interpretation of periodicity in disease prevalence. J. R. Stat. Soc. B, 92, 34–73 (1929)
S.H. Strogatz: Exploring complex networks. Nature, 410, 268–276 (2001)
H.R. Thieme: Asymptotically autonomous differential equations in the plane. Rocky Mt. J. Math., 24, 351–380 (1994)
H.R. Thieme: Mathematics in Population Biology. Princeton University Press, Princeton, NJ (2003)
H.R. Thieme, C. Castillo-Chavez: On the role of variable infectivity in the dynamics of the human immunodeficiency virus. In: C. Castillo-Chavez (ed.) Mathematical and Statistical Approaches to AIDS Epidemiology. Lecture Notes in Biomathematics, Vol. 83. Springer, Berlin Heidelberg New York, pp. 200–217 (1989)
H.R. Thieme, C. Castillo-Chavez: How may infection-age dependent infectivity affect the dynamics of HIV/AIDS? SIAM J. Appl. Math., 53, 1447–1479 (1989)
P. van den Driessche, J. Watmough: Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math. Biosci., 180, 29–48 (2002)
G.F. Webb: Theory of Nonlinear Age-Dependent Population Dynamics. Marcel Dekker, New York (1985)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this chapter
Cite this chapter
Brauer, F. (2008). Compartmental Models in Epidemiology. In: Brauer, F., van den Driessche, P., Wu, J. (eds) Mathematical Epidemiology. Lecture Notes in Mathematics, vol 1945. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78911-6_2
Download citation
DOI: https://doi.org/10.1007/978-3-540-78911-6_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-78910-9
Online ISBN: 978-3-540-78911-6
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)