Skip to main content

A Revisit to Least Squares Orthogonal Distance Fitting of Parametric Curves and Surfaces

  • Conference paper
Advances in Geometric Modeling and Processing (GMP 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4975))

Included in the following conference series:

Abstract

Fitting of data points by parametric curves and surfaces is demanded in many scientific fields. In this paper we review and analyze existing least squares orthogonal distance fitting techniques in a general numerical optimization framework. Two new geometric variant methods ( and ) are proposed. The geometric meanings of existing and modified optimization methods are also revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Nocedal, J., Wright, S.J.: Numerical Optimization, 2nd edn. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  2. Hoschek, J.: Intrinsic parameterization for approximation. Computer Aided Geometric Design 5(1), 27–31 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  3. J. Hoschek and D. Lasser. Fundamentals of Computer Aided Geometric Design. Peters, A. K. (1993)

    Google Scholar 

  4. Weiss, V., Andor, L., Renner, G., Várady, T.: Advanced surface fitting techniques. Computer Aided Geometric Design 19(1), 19–42 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bjorck, A.: Numerical Methods for Least Squares Problems. In: Mathematics Society for Industrial and Applied Mathematics, Philadelphia (1996)

    Google Scholar 

  6. Helfrich, H.P., Zwick, D.: A trust region algorithm for parametric curve and surface fitting. Journal of Computational and Applied Mathematics 73(1-2), 119–134 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Speer, T., Kuppe, M., Hoschek, J.: Global reparameterization for curve approximation. Computer Aided Geometric Design 15(9), 869–877 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Golub, G., Pereyra, V.: Separable nonlinear least squares: the variable projection method and its applications. Inverse Problems 19, 1–26 (2003)

    Article  MathSciNet  Google Scholar 

  9. Borges, C.F., Pastva, T.: Total least squares fitting of Bézier and B-spline curves to ordered data. Computer Aided Geometric Design 19(4), 275–289 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Atieg, A., Watson, G.A.: A class of methods for fitting a curve or surface to data by minimizing the sum of squares of orthogonal distances. Journal of Computational and Applied Mathematics 158, 227–296 (2003)

    Article  MathSciNet  Google Scholar 

  11. Ahn, S.J.: Least Squares Orthogonal Distance Fitting of Curves and Surfaces in Space. LNCS, vol. 3151. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  12. Wang, W., Pottmann, H., Liu, Y.: Fitting B-spline curves to point clouds by curvature-based squared distance minimization. ACM Transactions on Graphics 25, 214–238 (2006)

    Article  Google Scholar 

  13. Liu, Y., Pottmann, H., Wang, W.: Constrained 3D shape reconstruction using a combination of surface fitting and registration. Computer Aided Design 38(6), 572–583 (2006)

    Article  Google Scholar 

  14. Wallner, J.: Gliding spline motions and applications. Computer Aided Geometric Design 21(1), 3–21 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Piegl, L.A., Tiller, W.: The NURBS Book, 2nd edn. Springer, Heidelberg (1996)

    Google Scholar 

  16. Saux, E., Daniel, M.: An improved hoschek intrinsic parametrization. Computer Aided Geometric Design 20(8-9), 513–521 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Falai Chen Bert Jüttler

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Liu, Y., Wang, W. (2008). A Revisit to Least Squares Orthogonal Distance Fitting of Parametric Curves and Surfaces. In: Chen, F., Jüttler, B. (eds) Advances in Geometric Modeling and Processing. GMP 2008. Lecture Notes in Computer Science, vol 4975. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-79246-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-79246-8_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-79245-1

  • Online ISBN: 978-3-540-79246-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

pFad - Phonifier reborn

Pfad - The Proxy pFad of © 2024 Garber Painting. All rights reserved.

Note: This service is not intended for secure transactions such as banking, social media, email, or purchasing. Use at your own risk. We assume no liability whatsoever for broken pages.


Alternative Proxies:

Alternative Proxy

pFad Proxy

pFad v3 Proxy

pFad v4 Proxy